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ABSTRACT

Cochannel talker interference suppression is defined as the processing of a
waveform containing two simultaneous speech signals, referred to as the target and
the jammer, to produce a signal containing an estimate of the target speech signal
alone.

The first part of this report describes the evaluation of a simulated suppression
system that attenuates the jammer component of a cochannel signal, given the voic-
ing states (voiced, unvoiced, silent) of the target and jammer speech as a function-
of time and given the isolated target and jammer speech waveforms. Ten listeners
heard sentence pairs at average target-to-jammer ratios from -3 to -15 dB. Gener-
ally, 10 to 20 dB of jammer attenuation during regions of voiced target or jammer
improved target intelligibility, but the level of improvement was speaker-dependent.
These results are important because they upper-bound the performance of earlier
systems operating only in the voiced talker regions.

The second part addresses the problem of speaker activity detection. The
algorithms described, borrowed mainly from one-speaker speaker identification, take
cochannel speech as input and label intervals of the signal as target-only, jammer-
only, or two-speaker (target plus jammer) speech. Parameters studied included
training method (unsupervised vs. supervised) and test utterance segmentation
(uniform vs. adaptive). Using interval lengths near 100 ms, performance reached
80 percent correct detection. This part of the work is novel because it is one of the
first applications of speaker-dependent test-utterance-independent training to talker
interference suppression.
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1. GENERAL INTRODUCTION

During transmission of speech from a speaker to a listener, degradations to the-speech may
occur that can hamper the listener’s ability to identify the spoken-words. One type of degradation
which has been the topic of considerable research is the addition of Gaussian noise to-the original
speech signal (25;. Another type of degradation is the addition of a second speech signal (the
jammer) to the original speech signal (the target). Tor the purposes of this report, cochannel
talker interference suppression is defined as the processing of an input signal containing intervals of
simultaneous target and jammer to enhance the quality and,or intelligibility of the target sigral.
While, in practice, the jammer signal may have become mixed with the target signal through
acoustic, electrical, or radio-frequency coupling resulting in either-linear or nonlinear mixing-of the
two sigaals, the work described herein was limited to the siudy of cochannel signals resulting from
linear addition of target and jammer.

Chapter 2 discusses some of the previous work in cochannel interference suppression. Most
research has focused primarily on the separation of cochannel speech signals when one or both of the
speech signals are voiced {52,9,11,35,19,55,31,45;. The focus on voiced speecit is justified as follows.
First, of the three voicing states (voiced, unvoiced, silent) voiced speech is most frequent aad has
the highest average power. Second, the energy in voiced speech is concentrated at harmonics of
the fundamental frequency which could ease the separation task. Algorithms have been developed
that

¢ suppress areas of the spectrum where the jammer dominates and enhance areas where
the target dominates, or

e estimate jammer and target parameters from those areas of the spectrum in which
each is more prevalent, and synthesize an estimate of the target or jammer based on
those parameters or

e do both.

Recent evidence suggests that at least two systems can provide intelligibility improvement in some
situations.

Chapter 3 describes an experiment that measured the relationship between intelligibility
and the level of jammer suppression during specific voicing regions. The results identify those
regions of cochannel speech on which interference suppression most improves intelligibility, thereby
helping to focus algorithm development efforts. Specifically, the effects of attenuating the jammer
while the target is voiced ard attenuating the jammer while the jammer is voiced are reported
(source material and time limitations precluded testing other interesting voicing regions). Target
intelligibility was measured as a function of the average target-to-jammer energy ratio and level of
jammer attenuation (in those intervals where attenuation was applied). Previous research in this
area had been limited to measuring the masking effect of competing speakers as a function of their
target-to-jammer ratios (TJRs).
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Cochannel talker interference often results in a signal which contains intervals of isolated
target o1 jammer. Because parameter estimation in the one-speaker intervals it easier than param-
eter estimation in the two-speaker intervals, Chapter 4 addresses the problem ¢ speaker activity
de:ection. The algorithms studied take cochannel speech as input and label intervals of the signal
as target-only, jammer-only, or simultaneous (target plus jammer) speech; hence, they are similar
to traditional text-independent speaker identification in that a speech signal is inp.t and a hy-
pothesized source identity is output. One key difference between this new system-and t.aditional
text-independent speaker identification-is that the new system identifies the input speech as .aving
been produced by one of three sources: the target, the jammer, or both the target and jamme¢~
Traditional systems identify the input as one out-of many of possible speakers, hypothesizing im-
plicitly that only one speaker at-a time is active. Another important feature of the new system
is that it estimates the active speaker from speech segments on the order of 100 ms long, whereas
traditional systems typically require 5 to 20 seconds of speech to produce an estimate.

Finally, Chapter 5 summarizes the key points of the study and suggests-ideas for future work
in cochannel interference suppression.
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2. PREVIOUS WORK

Research on the intelligibility o a target speaker in the presence of a jamming:-speaker dates
back to World War II. Attempts to suppress such a jammer via digital signal processing techniques
have been underway for the last 20 years. This chapter reviews the accomplishments of these
research efforts in both intelligibility analysis and jammer suppression.

2.1 Intelligibility of Cochannel Speech

Before embarking on research aimed at suppressing cochannel talker interference, it is useful
to estimate the effect of the interference as quantitatively as possible and to identify those sets of
conditions under which its presence is most undesirable. As the primary purpose of a communi-
cations channel is to transmit messages from the transmitter to the receiver, a natural measure of
performance is the ratio of correctly received messages to total messages transmitted. In speech
research, this measure is called “intelligibility” and tends to vary with signal-to-noise ratio (SNR).
When the noise is a single competing speaker, the terms “target-to-jammer ratio” (TJR) or “voice-
to-voice ratio” (VVR) are substituted for SNR. These measures, which differ in name only, are-
defined as the difference in decibels (dB) between the target signal level and the jammer signal
level and can be measured in the peak or average sense.

Figure 1 shows how intelligibility varies as a function of TJR. Miller [28] presented sets of
“difficult” target words in the presence of sets of “difficult” jammer words. Listeners were provided
with a transcription of each target word after it was presented and were asked whether they heard
the word correctly. It is not clear whether the TJR reported by Miller is a peak or average
value. Perlmutter [42] presented syntactically-correct but semantically-anomalous (“nonsense”
target sentences in the presence of meaningful jammer sentences (“Harvard Sentences” [8]) and
asked listeners to transcribe the target words. Perlmutter used peak TJR as the independent
variable. Both curves show that at high TJRs, the jamming signal slowly reduces intelligibility from
near 95 percent at 418 dB to 90 percent at +6 dB. For TJRs less than +6 dB, the intelligibility
drop off is sharper, falling to 25 percent or less at -18 dB. Thus, these curves motivate research on
jammer suppression algorithms for signals with TJRs of +6 dB or less.

Intelligibility is not the only criterion to judge a noise suppression system. Listeners some-
times judge noise-suppressed channels to be more “readable” even when those channels offer no
measurable improvement in intelligibility. This effect has been demonstrated in the evaluation of
a noise-suppression system when the interference is a combination of impulsive, narrowband, and
wideband random noise [61]. In fact, many systems that improve the perceived quality of speech
in Gaussian noise actually degrade its intelligibility [25]. Although measures of readability and
quality are inherently subjective, standards for these types of evaluation do exist {50]. However,
the author is not aware of readability or quality curves for cochannel speech that are analogous to
the intelligibility graph of Figure 1.
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Figure 1. Intelligibility as a function of target-to-jammer ratio (TJR).

2.2 Types of Interfering Speech

While intelligibility curves-provide useful guidelines for identifying the interesting TJR range
for cochannel speech, the classes of speech signals that are likely to_interfere can also be charac-
terized. Although the frequency of interference between specific phonemes can be predicted, the
discussion here is limited to the interference between phonemes grouped by excitation type.

Denes studied phoneme frequency of conversational and narrative British English using “Pho-
netic Readers” (primers used to teach English to foreign students) as source material [6]. His anal-
ysis showed that 77 percent of the 72,210 phonemes encountered were voiced (vowels, semivowels,
diphthongs, nasals, voiced plosives, and voiced fricatives), while 23 percent were unvoiced (unvoiced
plosives, unvoiced fricatives). This statistic does not imply that 77 percent of all speech is voiced,
however, as the average duration of voiced phonemes might be different from the average duration
of unvoiced phonemes.

To understand better the effects of phoneme duration, the voiced, unvoiced, and silent regions
of 330 phonetically labeled sentences were measured (see Section 3.2 for a detailed description of
the data base). The results showed that 62 percent of the speech was voiced (vowels, semivowels,
diphthongs, nasals, voiced plosives, and voiced fricatives), 24 percent was unvoiced (unvoiced frica-
tives, unvoiced stops), and 14 percent was silent (preplosive silence). Table 1 shows the expected




composition of two-speaker speech when both the target and jammer are active and independent
of one another.

TABLE 1

Composition of Two-Speaker Speech

Target Voiced | Target Unvoiced | Target Silent

Jammer Voiced 38% 15% 09%
Jammer Unvoiced 15% 06% 03%
Jammer Silent - 09% 03% 02%

Although the voiced target and voiced jammer combination is most likely and has been most
thoroughly investigated in previous research, 62 percent of two-speaker speech falls into other
categories.

2.3 Review of Previously Proposed Systems

Since the early 1970s, numerous approaches have been applied to the cochannel talker in-
terference problem. The basis of all the separation systems has been the observation that during
voiced speech most of the energy of a speech signal lies in narrow bands centered around harmonics
of the fundamental frequency.! Thus, if one has available the pitch contours of the two competing
speakers and if the two contours differ from one another, it ought to be possible to separate that
part of the cochannel speech due to the target from that part due to the jammer by passing the
energy near the pitch harmonics of the target, or suppressing the energy near the pitch harmonics
of the jammer, or both. Most of the effort to date has been focused on the voiced speech separation
problem. Separation during unvoiced speech has been largely unaddressed.

Given that the previous speaker suppression systems tend to be pitch-based, they can be
described in terms of the same generic block diagram, shown in Figure 2.

1Through the rest of this report, the term “pitch” is used interchangeably with “fundamental
frequency,” even though pitch is more specifically a psychoacoustic quantity whereas fundamental
frequency, i.e., the frequency of vocal-cord excitation, is physiological.
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Figure 2. Generic block diagram of cochannel talker interference suppression systems.

The input cochannel speech is analyzed to extract a set of speech parameters. As a result
of the analysis, or parallel to it, the pitch of one or both of the speakers is estimated (manually
or automatically).?2 Once waveform analysis and pitch estimation have been completed, the target
and jammer are “separated,” or the target is “selected,” or the jammer is “suppressed.” Finally,

the estimated target signal is synthesized. This estimate serves as the output of the system.

Several previously proposed separation systems are described below. These characterize the
signal processing techniques that have been employed in the past to address cochannel interference.

2If pitch estimation is automated, it may be performed by analysis of the combined cochannel
speech or by analysis of the target and jammer signals isolated from one another. When performed
manually or when an estimator requires inputs other than those that can be automatically derived
from the combined cochannel speech input, the overall suppression system is said to require a priori

pitch, and as such is incomplete.




2.3.1 Comb Filtering

A digital comb filter passes signal components that are close to multiples of a reference
frequency fo, attenuates other components of the input signal, and has impulse response

h(n) = hob(n) + h16(n — T) + hob(n = 2T) + - - - + hi6(n — iT) + - - - , (1)
where

T=1 2)

and f; is the sampling rate. If the target pitch contour is available, comb filtering can be used
to extract linearly the target signal from the cochannel input by allowing the impulse response of
the filter to vary in time with the target pitch.3 The first attempt at cochannel suppression was
comb filtering using pitch contours-obtained from either visual examination of the target waveform-
or cepstral analysis of the summed waveform? to control the time-varying impulse response of a
comb filter. The nonzero components of the impulse response were located at multiples of the pitch
period (see Figure 3).

During unvoiced speech, filtering continued using the last pitch obtained during voiced speech.
Informal evaluation of this system showed some enhancement in regions of voiced target speech,
where most of the target speaker’s energy was, in fact, located very close to the harmonics of the
pitch. However, the target speech was found to be degraded in regions of unvoiced target speech.

Adaptive comb filtering [11,10], a generalization of the comb filtering scheme described above,
allows the spacings between nonzero values of the comb filter impulse response to be different from
one another (i.e., not necessarily uniformly T'), thereby improving results during regions of rapidly
changing pitch. During unvoiced speech, the comb filtering either can continue using the last valid
estimated pitch or can be replaced by simple attenuation. Formal testing of the adaptive comb
filtering system, comparing the intelligibility of the target speaker in the unprocessed cochannel
input to the intelligibility of the target speaker in the processed output, reported that processing
resulted in poorer intelligibility of the target over TJRs ranging from -3 dB to +9 dB [42,41]. Over

3Inverse comb filtering attenuates signal components that are close to multiples of a reference
frequency and passes the other components of the input signal. If the jammer pitch contour is
available, inverse comb filtering can be used to suppress the jammer signal from the cochannel
input by using the jammer pitch as the reference frequency.

4Gee Appendix A for a discussion of cepstral pitch estimation.
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Figure 8. Comb filtering uses o digital filter with an impulse response having nonzero
values only at multiples of the pitch period (10-ms in this exzample). This results in
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example)

a wide range of TIRs the target was more intelligible in the-original cochanne} input than in the
system-processed output. Further analysis of the “target-enhanced” waveform showed ti.at the
jammer peaks were being reduced by about 4 dB on average, but that presumably the comb-filter-
induced distortion of the target signal resulted in a net target intelligibility loss.

2.3.2 Short-Time Spectral Analysis of Two-Speaker Voiced Speech

Before describing the frequency-domain separation algorithms, it is important to understand
the short-time spectral analysis-approximations employed by many of the models.

The simple one-speaker speech production model views one-speaker voiced speech as the
result of passing a pulse train (modeling the vocal chord excitation signal) through a linear filter
(modeling the vocal tract). If the pulse train and linear filter were time invariant, the output would
be a superposition of impulse responses spaced by the pitch period, and the magnitude spectrum-




of the output would be a series of lines separated by the pitch frequency. Both the excitation and
filter, however, must be allowed to vary slowly in time to reflect changes in voicing, pitch, and
the vocal tract due to articulation and prosody. By modeling the excitation and filter as quasi-
stationary, i.e., stationary for short periods of times (say, 10 ms), meaning can be attached to the
short-time magnitude spectrum of the output, i.e., the spectrum of a short frame of the output.

As windowing in the time domain i> equivalent to convolution in the frequercy domein,
the ideal spectral impulses that appear in the spectrum of the output of the statioi.ary system
are replaced in the spectrum of the quasi-stationary syste.n by replicas of the windov. spectrum
centered at pitch harmonics of the shori-time =pectrum. By choosing a sufficiently iong window
size and an appropriate window shape, interference between neighboring window replicas can be
avoirded. Too long a window would allow too much variation in the voice production system during
the analysis frame interval and would invalidate the quasi-stationarity assumption.®

While the real and imaginary parts of the Fourier transform of two-speaker speech are just the
weighted sums of tne respective one-speaker spectra, the two-speaker magnitude spectrum is not
simply the weighted sum of the one-speaker magnitude spectra. However, in those time-frequency
regions where one speaker dominates, the compressive nature of the log function causes the log
magnitude spectrum of the sum to be a good approximation to the log magnitude spectrum of the
dominant speaker. Figure 4 shows that summing two synthetic -owels (having different spectral
envelopes and pitches) at 0-dB TJR results in a log magnitude spectrum that retains sonie of the
characteristics of each of its two components.

Because the pitches of the two speakers are generally differe..t from one another, some of the
window replicas of the first speaker might fall between the window replicas of the second speaker,
some might interfere with one another, and a few might be practically coincident with one another.

Besides the problem of interference, the two-speaker model has the same problems with
time variance that the one-speaker model has; neither the envelope nor excitation are ever truly
stationary. The problem is most severe in the high frequency regions, where the quasi-stationarity
assumption is most tenuous. Consider a typical chauge in pitch during a short sentence from, say,
120 Hz to 80 Hz in one second. The 15th harmonic changes from 1800 Hz to 1200 Hz, a change
of 600 Hz per second. Given a typical window length of 20 ms, the fundamental would shift 0.8
Hz during the window, while the 15th har;uonic would shift 12 Hz during the window. Therefore,
while the short-time spectrum representation of the fundamet..al might ’s°=ly resemble a window
spectrum replica, the 15th harmonic would, in general, be quite dic’ -ted. As ma»y of the two-
speaker systems assume that the shape of the peak centered at each harmonic is a window spectrum
replica, the ability of such systems to separate speech during inter~als of rapidly changing pitch is
severely limited in the high-frequency regions where most of th# information aiding intelligibility
is concentrated.

5See Rabiner and Schafer [47) for a complete discussion of short-time spectral analysis.
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With this introduction to two-speaker short-time spectral analysis, the frequency-domain
separation algorithms are describsd below.

2.3.3 Spectral Sampling

As a one-speaker spectrum tends to hav: peaks centered at harnonics of the »itch, the
spectrum of two-speaker voiced speech has been modeled as a superposition of two sets of peaks,
with one set of peaks lorated at the harmonics of the target and one set of peaks located at the
harmonics of ilie jammer. Aitempts have been made to sample the two-speaker magnitude ¢ ~ectrum
at multiples of eac! speaker’s pitch frequency to obiuin an estimate of the one-speaker spectrum
magnitude ~uvelop. s {29,20,48]. These systen < tend to assign all energy at multiples of the target’s
pitch to the target anu all energy at multiple: of the jammer’s pitch to the jammer Estimates of the
one-speaker waveforms are then generated using the estimated spectrum envelor ., and the known
(or estimated) pitches. Although informal ¢ aluation of such systems has res 'ted i1 apparent
mntciligibilivy improveinent, formal evaluatiun shows that such systems reduce intelligi*iiiy. This
reduction in 1ntelligibility is due to significant jammer energy present near harmonics of the target
pitch and to processing-induced target distortion.

An enhancement to the simple spectral sampling sysiems has been suggested [9]. By su-
perimpesing a train of impulses at harmonics of the target’s pitch frequency onto a magnitude
specirum of the two-speaker sp:ech and by discarding those impulses that are near harmonics of
the jammer's pitch frequency, an incomplete set of impulses remains that identifies regions in the
magnitude spectrum where the target speaker should be dominant. These “good approximation”
regions are used to recreate an approximation of the target’s vocal tract magnitude response, which
can be used with the pitch to synthesize an .imate of the target speaker’s speeck:. Two-talker
pitch estimation is performed via cepstral dor ain processing. This system has not bues evaluated
formally.

2.3.4 Harmonic Magnitude Selection

The ccmb iiltering and spectral sampling techniques tend to ignore the overlap between peaks
of the magnitude spectra of the target and jammer speakers. Harmonic magnitude selection is a fre-
quezncy domain n.evhod for separating the speech of two competing speakers [36,35,39,37]. Because
the peaks of the .arget tend to ovetlap with the peaks of the jammer, it is impossible to simply
assign each peak to one speaker or the other; therefore, peak overlap detection and separation are
performed to obtain estimates of the compcu«=rt n.espeaker peaks that have overlapped. Factors
indicating that peak overlap has occurred include too many peaks in one frequency region, too
much peak asymmetry, and sharp phase discontinuities. Peaks are separated based on the notion
that an ideal peak should bave a shape identical to the spectrum of the function used to window the
original speech segment. Once ail peak overlap detection and separation is comylete, the pitches of
the target and jammer are estimated. Based on the pitch, peaks attributed to the target are used
to form an estimated target spectruia from which an estimated target speech waveform is gener-
ated. Recent evaluations measured the intelligibility of two-speaker speech at TJRs from 0 to -5 dB
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when the target was a two-phoneme CV word (first phoneme: voiced consonant, second- phoneme:
vowel) and the jammer was a steady-state vowel [56]. Results showed that inteiligibility improved
from about 40 percent with no processing to 60 percent with processing. Similar experiments were
performed with competing cochannel voiced sentences at 0 dB. Here, intelligibility improved: from
57 percent with no processing to 76 percent with processing [55).

2.3.5 Sinusoidal Transform System

A new approach to the cochannel interference proble.n processes the input speech using a
sinusoidal transform system (STS) [45,4,5]. On each frame, a high-resolution Fourier transform of
the input cochannel speech is computed. Using two a priori pitch tracks, the real and.imaginary
parts of the transform are sampled at harmonics of each speaker’s pitch. Linear least-squares
estimation (LLSE) provides an estimate of the real and imaginary j arts of each speaker’s spectrum
at multiples of his pitch frequency, using the now familiar notion taat an ideal peak would have the
same shape as the spectrum of the function used to window the original speech. Note that the use
of real and imaginary spectra avoids the modeling e rors-associated with magnitude spectra, i.e.,
the sum of the real one-speaker spectra equals the r:al spe t=um of the sum and the sum of the
imaginary one-speaker spectra equals the imaginary s.,ecizum of the sum. When a pitch harmonic
of one speaker is so close to the pitch harmonic of th. other speaker as to make the LLSE matrix
equation ill-conditioned, multiframe interpolation provides an estimate of the missing information.
Finally, an estimate of each speaker’s speech waveform is generated by converting the real and
imaginary coefficients to magmtude and phase parameters, followed by a peak birth-death model
and sinusoidal synthesis [27]. Given a priori pitch, this system showed pror:ising informal results
for voiced speech with TJRs ranging from -16 dB to +16 dB. Positive informal results were also
reported when pitch estimates were obtained from an automatic multispeaker pitch estimator. Due
to hmitation of the pitch estimator, however, testing in this latter case was limited to 0 dB TJR
cochznnel input.

Although both harmonic magnitude selection and STS least-squares =stimation identify and
separate peaks, a major difference between the two systems is that harmonic magnitude selection
performs peak separation before pitch escimation, whereas STS performs peak separation based
on the pitch estimates. If the peaks of the component spectra really are at exact maltiples of the
pitch, and if the pitch contours of both the target and jammer signals can be measured accurately,
then the ST5 LLSE solution is optimal in that the RMS error between the actual waveform and
the sum of the ‘wo hypothesized component waveforms is minimized. However, if the peaks in the
isolated spectra are not at exact multiples of the pitch period, or if the pitch contcurs cannot be
measured accurately, then the harmonic magnitude selection may generate more accurate results.

2.3.6 Harwonic Magnitude Suppression

Harmonic magnitude suppression is a technique for estimating the jammer’s magnitude spec-
trum and sabtracticg it from the magnitude spectrum of the cochannel input, thereby obtaining an
estimate of the target speaker’s magnitude spectrum {18,19]. A block diagram is shown in Figure 5.

12




$52533-5

JAMMER

| ONE-SPEAKER | “pircny | HARMONIC JAMMER
JAMMER —>> PITCH > MAGNITUDE "RECON-
ESTIMATION — »| SAMPLING STRUCTION
TWO- ESTIMATED HARMONIC
SPEAKER" JAMMER MAGNITUDE
. MAGNITUDE _  SPECTRUM
winDow | +
AND -
FFT
+ " ESTIMATED TARGET
TWO- y MAGNITUDE SPECTRUM
SPEAKER
PHASE IFFT ESTIMATED
, —J] AND - TARGET
TARGET OVERLAP ADD -WAVEFORM

Figure 5. Harmonic magnitude suppression, which can operate effectively only when the
TJR & 0 and the jammer is voiced, subtracts a harmonic jammer estimated spectrum
from the input-spectrum, leaving an éstimate of the target spectrum.

The estimated jammer magnitude spectrum is modeled as a linear superposition of window
replicas centered at harmonics of the jammer pitch. By performing spectral magnitude subtrac-
tion, an estimate of the target speaker’s magnitude spectrum is calculated. The target magnitude
spectrum estimate is combined with the phase of the cochannel input and is inverse transformed to
generate an estimate of the target speaker’s speech waveform. This method is most effective when
it is easy to estimate the jammer’s magnitude spectrum from the cochannel input, i.e., when the
TJR « 0 and the jammer is voiced. The first constraint simplifies the problem and is consistent
with the observation that at positive TIJRs the target is already highly intelligible. In these cases,
it is claimed, it is best not to process the speech at all. As a result of the second constraint, during
regions of unvoiced jammer speech the cochannel input is passed through the system unprocessed.

Objective evaluation of the harmonic magnitude system using e priori pitch showed that-when
presented with -12 dB TJR input speech the TJR of the output speech was improved to about -6
dB [18].% Formal intelligibility tests of the harmonic magnitude system using a priori pitch showed

60n page 95 of Hanson and Wong [18], the processed output is reported to have a spectral distortion
(their metric) of about 10 dB, which corresponds (page 34 of Hanson and Wong [18]) to a TJR of
about -6 or -7 dB.
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intelligibility improvement of about 4 and 9 percent at TJRs of -6 and -12 dB, respectively. A more
complete version that estimates the pitch from the cochannel speech has been implemented {31!
and studied [30].

Another system uses harmonic magnitude suppression as a front end to a minimum- cross-
entropy spectral analysis. (MCESA) system {3,24}. The front end provides the MCESA processor
with an initial estimate of the target autocorrelation function, an initial estimate of the jammer
autocorrelation function, and the measured autocorrelation of the target and jammer combined.
The MCESA system generates two new -estimates which are respectively as close as possible to
the initial estimates (in the cross-entropy sense) subject to the constraint that the new estimates
are consistent with the-known combined autocorrelation: function. Subjective preference tests sug-
gested that speech processed by the MCESA system contained less interference but sounded-more
mechanical than the speech produced by the harmonic suppression system alone.

2.3.7 Physiologically Motivated Separation

Another system addresses the cochannel interference problem via a model of the human au-
ditory system {58,60,59]. As is typical of such physiologically motivated systems, the front end-is a
filter bank. The output of each filter-bank channel is run through a “coincidence” function, which
is a modified autocorrelation. Using the coincidence function output as a measure of periodicity,
channels can be grouped by their dominant pitches in the hope tha* ke two groups will be formed,
one for the channels dominated by the target and a second for the channels dominated by the
jammer.” A Markov model can be used to determine how many speakers are active and the acous-
tic characteristics of each talker’s voice. Stationary acoustic characteristics are voiced, unvoiced,
or silent. Transitory acoustic characteristics are onset, offset, becoming-voiced, and becoming-
unvoiced. This additional information is used to drive a spectral estimation system which takes as
input two spectra derived from the initial grouping, perturbs them (iteratively), and converges on
the two hypothesized one-speaker spectra which, when summed, are a local minimum distance away
from the input spectra. The system was tested not for intelligibility performance, but instead for
its ability to improve the performance of a one-speaker automatic digit recognizer. The evaluation
report is unclear as to the number of speakers tested, but it seems that for at least one positive TJIR
and one male/female pair, automatic digit recognition performance for the male target improved.

Although still primarily a pitch-driven system, a novel feature of this algorithm is its attempt
to determine how many speakers are speaking and to estimate something about the acoustic features
of each active speaker. Another interesting feature is the system’s attempt to use one-speaker
spectral continuity constraints in the separation process.

it seems that the target and jammer must have substantially different pitches (e.g., one should
be male, the other female). In some versions of the system, training is required to obtain a priori
average pitches of the two talkers.
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2.3.8 Jammer Pitch Suppression

At least two attempts have been made to suppress a jammer by separating the incoming
cochannel signal into envelope and excitation components, suppressing the excitation component
due to the jammer, and then synthesizing supposedly enhanced speech.

One idea is to use cepstral domain processing to- perform separation [56]. As discussed in
Appendix A, one-speaker cepstral domain pitch estimation is usually performed by finding the
maximum cepstral value in a subset of the cepstral domain which corresponds to the domain of
expected pitch period lengths. It has been observed that for some cases the summing of two voiced
speech signals results in two cepstral local maxima in the expected pitch region. For a voiced

target and voiced jammer, if it is known @ priori whether the jammer pitch is higher or lower than

the target pitch the peak due to the jammer pitch can often be identified. Thus, an algorithm
has been implemented that transforms the cochannel input into the cepstral domain, identifies
the pitch peak due to the jammer, sets that part of the cepstrum near the jammer peak to zero,
and transforms the signal back to the time domain. Although this algorithm had been suggested
[9], it had never been evaluated formally. The system makas no attempt to separate the envelope
information stored in the low-order cepstral coefficients. Even so, when tested on CV words and
voiced sentences, the system performed comparably to the harmonic magnitude selection system
described in Section 2.3.4 [55,56].

Another idea is to use linear predictive (LP) analysis to perform enhancement [7]. The result
of LP analysis is an all-pole estimate of the vocal tract envelope and a residual error signal from
which pitch might be estimated. Assuming the jammer is loud and voiced, it was argued that
if the periodic impulses were removed from the error signal the resynthesized speech would be
jammer suppressed. Unfortunately, informal testing of this system showed no ability to suppress
the jammer.

2.3.9 Other Types of Separation

Two additional systems have been proposed. The first system uses the Least Mean Squares
(LMS) algorithm to adapt weights of an all-pole filter [1]. As implemented, this adaptive linear
predictive system uses the values of the cochannel input signal at time ¢ — 1 and ¢ — p, where p
is the a priori pitch of the target, to estimate the target-only signal at ¢. It is shown that for
positive TJRs, the weights of the LMS filter when the input is the target alone are similar to the
weights of the filter when the input is the target plus the jammer. The system was tested with
synthetic periodic signals, for which 5 to 10 dB of jammer suppression was obtained. No testing of
real speech, formal or informal, was attempted.

The second system was applied to the problem of word recognition in the presence of a
competing talker [22]. It was observed that the poles of a cochannel signal as obtained via LP
analysis are roughly a superposition of the poles of the individual one-speaker signals. Thus, better
recognition can be obtained by selecting only a subset of the poles of the cochannel speech to
participate in the recognition process. Given a set of poles present in the reference template, the




poles of the unknown cochannel input chosen to participate in the matching process are those that
are “closest” to one of the poles in the reference. When evaluated formally, this pole selection
system reduced word-error rates substantially over a wide range of negative TJRs. This idea has
not been extended to speech enhancement.

2.4 Discussion

A common characteristic of previous research efforts is focus on pitch-based speaker sepa-
ration. There are at least two shortcomings to this approach. First, the systems cannot address
specifically unvoiced speech. Typically, unvoiced regions either are passed unprocessed (or only
marginally processed, e.g., attenuated) in an attempt to bridge the gap between voiced region: or
are processed using the same pitch-based techniques employed for voiced speech (which makes little
sense in the unvoiced regions, where pitch does not exist). Perhaps this is-part of the reason that
no system has achieved high sepaiation performance on phonetically balanced speech, although
this is only speculation, no system has been tested formally on voiced speech then retested on
general (voiced and unvoiced) speech. One conclusion to be drawn from previous work is that new
suppression algorithms might improve performance by focusing on speaker separation during all
types of target and jammer speech, including voiced speech, unvoiced speech, and silence.

The second shortcoming of the previous pitch-based separation schemes is that the models
used for voiced cochannel speech may be too simplified to he practical. Specifically, the approxi-
mation that the sum of the log magnitude spectra is equal to the log magnitude spectrum of the
sum is rather inaccurate. Furthermore, systems that employ a series of harmonic-centered window
replicas may be relying too heavily on the quasi-stationarity approximation. The models affect not
only jammer suppression, i.e., 2 bad model may result in less suppression, but also affect the extent
of target distortion, i.e., 2 bad model may result in greater distortion of the target. Therefore,
better, more complicated voiced speech models will be required to achieve greater levels of target
intelligibility improvement.

A final important conclusion is that informal evaluation of a suppression system, while helpful
in the intermediate stages of algorithm development, can be somewhat misleading. Before a system
can be deemed successful, a formal performance evaluation must be conducted.
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3. SPEECH-STATE-ADAPTIVE SIMULATIONS

As shown in Section 2.3, previous cochannel jammer suppression research has focused pri-
marily on the separation of cochannel speech signals when one or both of the speech signals are
voiced. The focus on voiced speech-is justified; of the three voicing states (voiced, unvoiced, silent),
voiced speech is most frequent and has the highest average power, and the energy in voiced speech
is quasi-periodic, with its energy concentrated at harmonics of the fundamental frequency (pitch).
Therefore, separating two voiced speakers with different pitches has been perceived as a relatively
simple task.

This chapter describes an experiment designed to measure the relationship between intelli-
gibility and the level of jammer attenuation during specific voicing regions. Jammer suppression
was modeled by attenuation because attenuation was easier to perform than other types of sup-
pression (e.g., jammer distortion), it had been studied before (see Section 2.1), and it seemed to
be the implicit goal of the earlier systems. Furthermore, a jammer attenuation simulation system
could upper-bound the-expected performance of the previous systems in that the simulation sys-
tem passed the target signal unprocessed, whereas any realizable system would distort the target
signal to some extent, thereby reducing the level of intelligibility improvement. Attenuation was
applied to the jammer based on a number of system- and data-dependent parameters. The effects
of applying attenuation to the jammer while the target was voiced (abbreviated V/* for “attenuate
jammer when target = voiced, jammer = anything”) and applying attenuation to the jammer while
the jammer was voiced (abbreviated */V for “attenuate jammer-when target = anything, jammer
= voiced”) were studied. These two state-pair sets were chosen because they best represented the
areas in which previous systems had attempted to suppress the jammer and because source ma-
terial and time limitations precluded testing attenuation in other interesting regions. The effects
of parameters such as the average target-to-jammer energy ratio (TJR) and the level of jammer
attenuation in those regions where suppression is applied on intelligibility were-also studied. Pre-
vious research in this area, as reviewed in Section 2.1, had been limited to measuring the masking
effect of competing speakers as a function of their TJR.

3.1 System Operation

A block diagram of the simulation system is shown in Figure 6.

Each output sample was formed by adding a weighted sample of the target waveform to a
weighted sample of the jammer waveform. The weights were adjusted on each sample and were
calculated based on the voicing states of both the target and jammer talker and on the following
input parameters:

17




1525336
+ JREJ RNR A\
TARGET
—_ —— Wy
FROM - STATE GAIN
TEXT | sammeR CALCULATOR
FILES | sTATE

TARGET
SPEECH
FROM
BINARY

FILES

JAMMER
SPEECH

Figure 6. The simulated cochannel talker interference suppression system.

NR

TJR

JREJ

A set of state pairs during which the jammer was attenuated.

A set of state pairs during which the jammer was not attenuated.

The desired average target-to-jammer energy ratio in dB during state
pairs in NR. Equal to the average target-to-jamamer energy ratio of
the “unprocessed” cochannel speech.

The level of attenuation in dB applied to the jammer during state
pairs in R.

A ramp time used to minimize the effects of audible clicks at voicing
region-boundaries. All experiments used A = 100 samples (5 ms at
20-kHz sampling rate).
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Given values for the parameters listed above and given the inputs

si(n)  a target signal,

sj(n)  a jammer signal,

No the time of the most recent state-pair change that caused a transition from
either Rto NRor NR to R, and
o the current state pair,

the output of the system, ssum, was

Ssum(n) = we(n) - se(n) + w;(n) - s5(n) , (3)
where
TJR
10720
wi(n) = wy = ——=7 4
t( ) t 1+10_g¥0§ ( )
and
wj(n) = Wgr-a(n)+Wyr-(1—a(n)) (5)
Wy L (6)
R = —%7%
1+10% '
1 1
Wam (k) (L) ;
R 1 J};(I)'JJ (1+10%§) ()
1 fCeRandn—np> A
0 ifCeENRandn—-np2> A
am={ (8)
% fCeRandn—-np<A
1-% fCeNRandn—-np <A

To summarize the equations, the target weight we(n) was fixed for the entire sentence at a value
such that no matter what TJR was specified, fixed-point overflow of s,um(n) could not occur.
Similarly, w;j(n) was set to Wyg during NR state pairs to satisfy the TJR constraint and was
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changed smoothly to W during R state pairs, thereby simultaneously satisfying the TJR and
JREJ constraints. New values of Ny and C' were read from a hand-crafted phonetic label file
accompanying each binary speech file (see Section 3.2).

3.2 Data Base

A data base of 630 English syntactically correct, semantically anomalous (“nonsense”) sen-
tences was used as input to the simulation system [43]. This data base, referred to licreafter as the
“MIT-CBG" data base, had been digitized previously at a 20-kHz sampling rate with 9-kHz cutoff
low-pass filtering and 12-bit precision. The data base was collected from three male speakers each
speaking 210 sentences. The text of each the 630 sentences was unique and had the form:

ap {A} N {va} V {p} ap N.

ap  Possessive Adjective

A Adjective

N  Noun

va  Auxiliary Verb
V  Verb

p Preposition.

Braces indicate parts of speech that were included in some but not all sentences. Capitalization
indicates “keywords” chosen at random from a list of commonly used English words [23]. Only
these keywords were scored. As an example, one sentence was:

their SWELL MINT POSES by our REACH.

For many sentences in the MIT-CBG data base, a phonetic transcription was available that con-
tained a phonetic label vs. time table for the sentence 8 (see Figure 7).

Given this detailed time-aligned phonetic transcription, a simpler voicing state transcription
was generated for input to the simulated separation system by classifying each phoneme as voiced,

80nly 110 sentences per speaker were phonetically labeled. The use of V/* and */V rejection
state-pair sets, however, allowed the unlabeled sentences to be used for the jammer and target,
respectively.
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WORD: SYMBOL: FROM: (msec) TO:(msec)

THEIR # 0000. 0044.
dh 0044, 0068.
eh 0068. 0123,
r 0123. 0188.
SWELL *# 0188. -0188.
*S 0188. 0363.
*y 0363. -0441.
*1. 0441, 0578.
OUR # 1593, 1593.
aw 1593. 1723.
REACH *# 1723. 1723.
*r 1723. 1909. B
*iy 1909. 2016.
*~t 2016. 2083.
*ch 2083. 2232.
NIL # 2232, 2300.

Figure 7. Ezcerpts from the phonetic label file for the sentence “Their-swell mint poses
by our reach.” The first column shows the text of each word of the sentence. The second
column shows the ASCII label of each phoneme. The third and fourth columns show the
time, in-ms, of the beginning and ending of each phoneme.
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unvoiced, or silent.? As discussed in Section 2.2, the MIT-CBG data base sentences comprised
speech-that was 62 percent voiced, 24 percent unvoiced, and 14 percent silent.

3.3 Experimental Procedure

‘Based on the results of preliminary testing, the 20 conditions-shown in- Table 2 were chosen
for final evaluation. Five listeners heard the 20 conditions with speaker “mm” as target and speaker
“ms” as jammer (Session 1), and five listeners heard the 20 conditions with speaker “ms” as target
and speaker “mp” as jammer (Session 2).10 For each condition and each session, 15-target sentences
and 15 jammer sentences were processed using the simulation system described above to create 15
output sentence pairs. The digitized sentence pairs were D/A-converted and low-pass filtered
(cutoff at 4.3 kHz) before being recorded on an analog cassette tape (Sony TC-K555-ES cassette
deck; BASF CR-MII tape). Five sentence pairs per condition were used to train listeners, allowing
them to become familiar with each particular condition. These training sentence pairs were not
scored, and the component sentences were reused in training sentence pairs for other conditions.
The remaining ten sentence pairs per condition were transcribed by the listeners and were used for
scoring purposes. No listener heard either a target or jammer sentence used for scoring purposes
more than once.

The ten listeners were normal-hearing native speakers of English!! and were between the ages
of 18 and 29. Although some had participated in earlier listening tests, none had previously heard
the sentences or talkers used in this experiment. The listeners were not told the purpose of the
experiment.

The intelligibility tests were conducted in a soundproof room large enough to accommodate
five listeners per session. Each sentence was presented through Telephonics TDH-39P headphones
at an average level of 80 dB SPL. Listeners heard each sentence, transcribed it, and signaled when

9A mapping of phoneme classes is shown in Table 7. “Voiced” phonemes included vowels, diph-
thongs, semivowels, voiced fricatives, voiced nasals, and voiced stops. “Unvoiced” phonemes in-
cluded the ‘h’, unvoiced fricatives, and unvoiced stops. “Silence” included preplosive, intersyllable,
interword, and intersentence pauses.

10Although the set of sentences spoken by the speakers had common syntax, the average duration
of the sentences varied considerably from one speaker to the next. Speaker “mp” had the longest
average length, followed by speaker “ms” and then speaker “mm”. To ensure that no target words
were left unjammed, the jammer sentence was constrained to be longer (in time) than the target
sentence. Given that all 210 sentences per speaker were needed, only three target/jammer pairings
were possible, namely, mm/mp, ms/mp, and mm/ms. The last two pairings were chosen for testing.

1Qpe of the ten listeners had mild high-frequency hearing loss in both ears. As he scored second
best of all listeners, his results were included.
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TABLE 2
Simulation System Evaluation. Conditions (TJR and JREJ in-dB)

TJR | JREJ | R State Set | TIR | JREJ | R State Set | TJR | JREJ | R State Set

-15 0 — -6 0 - -3 0 —
-15 15 V/* -6 10 V/* -3 10 V/*
-15- 15 * IV -6 10 A% -3 10 */V
-15 o0 V/* -6 20 V/* -3 20 V/*
-15 o0 */V -6 20 *IV -3 20 */V
00 — — -6 oo V/* -3 00 Vv/*

-6 0 *V -3 0 * IV

ready to continue. When all listeners had signaled, the next sentence was presented. There was a
one minute break after each condition and a five minute break after every three conditions. The
complete presentation of 20 conditions took approximately two hours, split over two days.

3.4 Scoring

After the entire experiment was complete, the handwritten listener responses were entered
into a computer for automatic scoring.!? The score for each sentence, defined as the number
of keywords in the sentence minus the sum of the addition, deletion, and substitution errors, was
computed. Because the sentences were semantically anomalous, homophones were scored as correct
responses, as were words having missing or extra “-s” and “-ed” suffixes.

3.5 Results

The results of the Session 1 and Session 2 intelligibility evaluations are shown in tabular
format in Tables 3 and 4 and are shown graphically in Figures 8 and 9. Analysis of variance
(ANOVA) tables are shown in Tables 5 and 6.

12The string alignment and scoring program was written by Stan Janet and is available from the
National Institute of Standards and Technology.

23




TABLE 3
Session 1 Simulation Results for Target “mm” and-Jamme: “ms”
Parameters 7 ~ Listeners
TJR | JREJ | R State Set 1 2 3 4 5 Mean
-3 0 —_ 64.1 | 66.7 | 615 | 69.2 | 41.0 60.5
-3 10 V/* 706 | 853 | 76.5 | 853 | 70.6 7.7
-3 10 * IV 76.9 89.7 84.6 84.6 74.4 82.0 b
-3 20 V/* 71.0 80.6 90.3 710 58.1 74.2
-3 20 */IV 917 | 91.7 | 889 | 889 | 889 90.0-
-3 ) V/* 80.6 | 903 | 80.6 | 935 | 742 | 838
-3 oo */V 917 | 889 | 972 | 86.1 | 917 91.1
-6 0 — 289 | 526 | 526 | 395 53 35.8
-6 10 V/* 514 | 657 | 743 | 60.0 | 486 | 60.0
-6 10 *IV 71.0 | 935 | 935 | 677 | 61.3 77.4
-6 20 V/* 63.2 | 895 | 789 | 789 | 816 78.4
-6 20 A" 806 | 87.1 | 935 | 839 | 87.1 86.4
-6 oo V/* 882 | 853 | 735 | 588 | 67.6 | 747
-6 00 *IV 833 ] 86.7 | 933 | 867 | 9C9 88.0
-15 0 — 105 | 289 | 316 | 79| 53| 168
-15 15 V/* 548 | 67.7 | 61.3 | 516 | 613 59.3
-15 15 A" 62.9 | 80.0 | 77.1 | 80.0 | 60.0 72.0 |
-15 © V/* 649 | 811 | 784 | 703 | 67.6 725 1
-15 00 A" 833 | 967 | 833 | 833 | 70.0 || 833 [
o | - — 025 | 950 | 950 | 875 | 900 | 020 |
NOTE: Each data point indicates target transcription aAccuracy, measured in percent ‘J
correct, for ten pairs of target and jammer sentences. TJR and JREJ are measured - i‘
in dB. Note that co JREJ represents intelligibility of the. target when the jammer iJ
was attenuated completely during the rejection stat:-pair set, whereas co TJR i
represents the intelligibility of the isolated target sentences with no jammer present. )
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TABLE 4
Session 2 Simulation Results for Target “ms” and Jammer “mp"”
Parameters Listeners

TJR | JREJ | R-State Set 1 2 3 4 5 Mean
-3 0 — 154 | 385 | 256 | 231 | 28.2 26.2
-3 10 V/* 16.7 36.7 40.0 23.3. | 433 32.0
-3 10 A" 29.4 52.9 52.9 38.2 50.0 447
-3 20 V/* 55.6 75.0 61.1 52.8 63.9 61.7
-3 20 *IV 78.4 83.8 75.7 75.7 91.9 81.1
-3 o0 V/* 54.1 | 64.9 45.9 43.2 64.9 54.6
3 o0 *IV 80.6 96.8 77.4 774 | 87.1 83.9
-6 v — 10.3. | 30.8 179 20.5 41.0 241
-6 10 V/* 23.5 67.6 41.2 29.4 50.0 423
-6 10 *IV 6.5 323 25.8 22,6 258 22.6
-6 20 V/* 30.3 60.6 485 33.3 51.5 448
-6 20 * |V 722 | 917 | 722 | 722 | 722 | 76.1
-6 o0 V/* - 78.1 81:2 68.8 68.8 84.4 76.3
-6 o *IV 80.0 83.3 63.3 56.7 66.7 70.0
-15 0 —_ 7.5 22,5 17.5 0.0 7.5 11.0
-15 15 V/* 26.7 30.0 16.7 10.0 26.7 220
-15 15 */V 0.0 30.6 8.3 5.6 8.3 10.6
-15 o0 V/* 50.0 { 70.6 55.9 41.2 441 52.4
-15 o *V 67.7 87.1 77.4 74.2 80.6 774
00 — — 82.5 87.5 82.5 95.0 85.0 | 86.5
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Figure 8. Session 1 simulation results for target “mm” and jammer “ms.” Each pair of
curves represents a different TJR ratio, with the curve with the ‘o’ symbols represeniing
the V/* condition and the curve with the ‘7’ syinbols representing the */V condition. Nule
that the “INFINITE?” level of rejection ineasures the intelligibility of the target when the
Jammer was rejected completely during the specified rejection state-pair set, wherzas the
condition “NO JAMMER" measures the intelligibility of the isolated target sentences with
no jammer present.

The arcsine transform was applied to the data prior to ANOVA to nor.aa..z. the variance
across the sets of factors [57]. The results show the following :

¢ Generally, the effect of cochannel interference and its simulated suppression seems to
be speaker-dependent, as the curves for the two sets of target/jammer pairs tested
have different shapes and relative levels. Session 1 intelligibility was generally higher
than Session 2, particularly at low JREJs. Furthermore, intelligibility in Session
1 was affected strongly and uniformly by TJR, whereas this effect was much less
systematic for Session 2.
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TABLE 5

Session 1 Analysis of Variance for Target “mm” and Jammer “ms"

Factor Sum of Sq | Dg Frdm | Mean Sq F-ratio p

. Lstnr 0.6175 4 0.1544 5.5341 | 0.009 **
JREJ 2.4456 3 0.8152 29.2186 | 0.000 ***
JREJ x Lstnr 0.2607 12 0.0217 0.7778 | 0.665

- States 0.3400 1 0.3400 12,1864 | 0.004 ***
States x Lstnr 0.0981 4 0.0245 0.8781 | 0.505
JREJ x States 0.2285 3 0.0762 2.7312 | 0.090
iﬁ_ESJT’;l;T&i%R) 7 0.3344 12 | 0.0279 1.0000 | 0.500
Lstnr 1:6390 4 0:4098 12,2695 | 0.000 ***
JREJ 7.2622 3 2.4207 72.4761 | 0.000 ***
JREJ x Lstnr 1.3593 12 0.1133 3.3922 | 0.022 %
States 0.5927 1 0.5927 17.7455 | 0.001 ***
States x Lstnr 0.0671 4 0.0168 0.5030 | 0.734
JREJ x States 0.2598 3 0.0866 25928 | 0.101
;'(Fifn’: ?éfrtsf) 0.4009 12 0.0334 1.0000 | 0.500
Lstnr 1.1251 4 0.2813 20.2374 | 0.000 ***
JREJ 10.6609 2 5.3304 383.4820 | 0.000 ***
JREJ x Lstnr 0.3136 8 0.0392 2.8201 | 0.082
States 0.2647 1 0.2647 19.0432 | 0.002 ***
States x Lstnr 0.0822 4 0.0206 1.4820 | 0.294
JREJ x States 0.1327 2 0.0663 47698 | 0.043 *
ﬁifn’: (Séfrff) 0.1109 8 | 00139 | 10000 | 0500

- NOTE: The top, middle, and bottom tables are for -3 dB, -6 dB, and -15 dB TJR, respectively. Columns
indicate factor(s) tested, sum of squares, degrees of freedom, mean square, F-ratio, and probability of

. null hypothesis (see Brown and Hollander [2] for a summary of ANOVA techniques). Unequal JREJs
prohibited cross-TJR ANOVA, ¥, '**' and "***' indicate significance of the factor(s) at the 95%, 99%,
and 99.5% confidence levels, respectively.




TABLE 6
Session 2 Analysis of Variance for Target “ms” and Jammer “mp"

Factor ‘Sum-of Sq | Dg Frdm | Mean Sq F-ratio- | P *
Lstnr © 1.0579 4 0.2645 | 26.7172 | 0.000 ***
JREJ 7.1318 3 23773 | 240.1313 | 0.000 *** "
JREJ x Lstar 0.3347 12 0.0279 2.8182 | 0.043* 5
States 1.2117 1 1.2117 | 122.3939 | 0.000 ***

States x Lstnr .0.0062 4 0.0015 0.1515- | -0.959
JREJ x States 0.6167 3 0.2056 | 20.7677 | 0.000 ***
iﬁ:ﬂ’: (Séf::f) 0.1188 12 | 0.0009 1.0000 | 0.500
Lstnr 1.4163 4 0.3541 | 22.8452 | 0.000 ***
JREJ 7.4543 3 2.4848 | 160.3097 | 0.000***
JREJ x Lstnr 0.6783 12 0.0565 3.6452 | 0.017 *
States 0.0067 1 0.0067 0.4323 | 0.523
States x Lstnr 0.0713 4 0.0178 1.1484 | 0.381
JREJ x States 1.6297 3 05432 | 35.0452 | 0.000 ***
ilﬁfn’: (Séfrtjf) 0.1855 12 0.0155 1.0000 | 0.500
Lstnr 1.5926 4 0.3981 | 11.4397 | 0.002 ***
JREJ 10.0045 2 5.0023 | 143.7442 | 0.000 ***
JREJ x Lstar 0.3012 8 0.0489 1.4052 | 0.321
States 0.0151 | 1 0.0151 0.4339- | 0.529
States x Lstnr 0.1666 4 0.0416 11954 | 0.383
JREJ x States 1.1135 2 0.5567 | 15.9971 | 0.002 ***
i RLES:;: (Séf::f) 0.2784 8 0.0348 1.0000 | 0.500
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Figure 9. Session 2 simulation results-for target “ms” and jammer “mp.”

-

e For both sessions, the effect of varying JREJ was significant at all TJRs, although

its impact was again stronger and more uniform-in Session 1 than in Session 2. For
Session 1, a JREJ-of 10 dB produced a meaningful increase in intelligibility at all
TJRs, whereas a JREJ of 20 dB was required for a similar increase in Session 2.

For Session 1, */V attenuation resulted in significantly higher intelligibility than
V/* attenuation for all TJRs. For Session 2, this result was significant only at -3-¢3
TJIR. At other TJRs in Session 2, there was little consistent difference between */V
and V/* attenuation. Generally, in favorable listener conditions (i.e., regions of high
intelligibility) */V resulted in better intelligibility than V/*.

For Session 1, the interaction between JREJ and rejection state-pair set was signifi-
cant only at -15 dB TJR, whereas for Session 2 this interaction was significant at all
TJRs. Generally, in unfavorable listening conditions (i.e., regions of low intelligibil-
ity) the effects of the JREJ and rejection state-pair parameters were not independent
and, at least for Session 2, were unpredictable.
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3.6 Discussion

Perhaps the most striking result of the simulation system experiments is the extent-to which
intelligibility was speaker dependent. The fact that not only the levels but the overall shapes of
the intelligibility curves were so different was unexpected, and suggests that formal intelligibility
evaluations of real suppression systems should be run on a rich set of targets and jammers.

The general result that */V attenuation generally outperformed V/* suppression can be
explained as follows. Given that voiced speech tends to have more power than unvoiced speech
(although not necessarily greater masking ability) and given that most speech is voiced, most of
the energy in a given sentence is in the voiced regions. Thus, attenuation of a jammer has a greater
impact on the overall energy of the jammer sentence if it is applied to the voiced regions of the
jammer than if it is applied as-a function of the target speaker voicing state. Therefore, as the */V
rejection results in a lower energy jammer than the V/* rejection for a given rejection level, it is
not surprising that target intelligibility was generally higher for */V than for V/*.

Informal listening indicated that the */V condition was-perceptually similar to uniform at-
tenuation of the jammer independent of its state, except that the former resulted in exaggerated
unvoiced phonemes. The V/* condition, however, altered the jammer randomly. Informally re-
piaying the sentence pairs presented in Session 2 suggested to the author that the presence of
an attenuated jammer with exaggerated unvoiced phonemes (jammer moderately intelligible) may
have confused the listeners more than a distorted (barely intelligible) jammer, resulting in lower
target intelligibility for */V than V/*.

One of the goals of the simulation was to upper-bound the effectiveness of some of the pre-
viously proposed suppression systems. Perlmutter {41] reported jammer suppression of 4-dB for
adaptive comb filtering (see Section 2.3.1). Because comb filtering can suppress the jammer only
when the target is voiced, the V/* rejection state-pair set upper-bounds the expected performance
of comb filtering. Although Perlmutter evaluated comb filtering at TIJRs higher than those tested in
this study, the resulting lack of intelligibility improvement, given only 4 dB of jammer suppression,
is consistent with the results presented here.

On the other hand, harmonic magnitude suppression (see Section 2.3.6) can be upper-bounded
by the */V rejection state-pair set. At -12 dB, the a priori pitch harmonic magnitude suppression
system was able to improve the overall TIR to about -6 dB. The 4 percent improvement at -6 dB
TJR and 9 percent improvement at -12 dB TJR is consistent with the upper bounds of Session
1, but not with those of Session 2. This discrepancy is probably due in part to the subjects’
hearing multiple repetitions of the cochannel output, and in part to the speaker-dependent nature
of jammer masking and jammer suppression.

3.7 Future Work

The work described in this chapter is not comprehensive. Future studies should employ
additional speaker pairs and test other TJRs, JREJs, and rejection state pairs. Rather than using
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hand-labeled sentences, it would be easier and almost as accurate to use a good automatic one-
speaker voicing detector on each signal prior to mixing. This would allow labeling of speech that
had been collected pieviously as part of other data base collection efforts. Additionally, it would be
interesting to use the same speaker data base to evaluate each of the previously proposed systems.
With such results, it would be possible to objectively compare the systems with one another and
with-their respective upper bounds.
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4. AUTOMATIC TALKER ACTIVITY LABELING

A cochannel automatic talker activity labeling system is a classifier that takes a cochannel
speech segment as input and identifies intervals where the target is-active and the jammer is silent,
the jammer is active and the target is silent, and both the target and jammer are active.!® This
chapter begins with the motivations for such a classifier, introduces and reports on evaluations-of
two-talker activity labeling systems, and discusses the results and suggests future work. To the
author’s knowledge, the work described herein is the first attempt at applying speaker identification
techniques to cochannel talker-activity labeling.

4.1 Motivation

The three main reasons for developing a talker activity labeling system are explained below.
For the purpose of this discussion, “cochannel” speech means speech comprising regions produced by
the following sources: target speaker alone, jammer speaker alone, or target plus jammer speakers.

4.1.1 Boundary Conditions for Joint Parameter Estimation

It is difficult to estimate one-speaker speech production parameters from regions of the cochan-
nel signal that-contain both target and jammer.} If the input signal contained regions where each
speaker was speaking in isolation, it might be possible to perform parameter estimation in the
one-speaker regions and then use the resulting estimates as initial or final conditions for the two-
speaker regions. For example, all of the previous suppression systems described in Chapter 2 either
require a priori pitch or perform one-speaker or two-speaker pitch estimation. The systems that
employ pitch estimators tend not to be robust. Rather, they rely on a priori conditions, e.g.,
the target and/or jammer is voiced, the jammer bas greater average energy than the target, the
target and jammer have equal average energies, the target and jammer pitch tracks do not cross,
etc. Given that joint pitch estimation is a difficult problem and given that so many systems rely
on accurate pitch estimates to perform separation, one might focus initially on input signals that
are not completely two-speaker, i.e., that have regions where either the target or jammer is silent.
If such regions could be detected, it would be possible to use a conventional one-speaker pitch
estimator to obtain an estimate of the active speaker’s pitch. When the other speaker becomes
active again, both an initial and final condition would be available for the joint pitch estimation
system (an initial condition for the pitch of the speaker in the two-speaker region about to start

13presumably the case of both speakers silent could be detected using conventional silence detection
techniques. See Section 4.3 for an explanation of how silence was handled in this study.

141p fact, the work described in this chapter grew out of an attempt at two-speaker pitch estimation,
which is described in Appendix B.
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and a final condition for the pitch of the speaker in the preceding two-speaker region). The in-
formation produced by talker activity labeling might be used by a joint pitch estimator and could
also be applied to any other joint parameter estimator operating on the cochannel-speech. With
the goal of performing parameter estimation, the speaker identification system should achieve high
performance levels given as little input speech as possible. The smaller the detection interval the
better the resolution of the system, making it better suited to detect short bursts-or dropouts of
one speaker or the other.

4.1.2 Long-Term Reference Information

A second motivation for investigating talker-activity labeling is-that it introduces the notion
of using long-term information about the target and jammer speakers in the separation process.
Research shows that the task required of previous computer-based cochannel talker interference
suppression systems (given no a priori information) has been much harder than the task typically
required of human listeners. A typical computer-based system is told- “extract the speaker with the
higher pitch” or-“extract the weaker speaker.” On‘the other hand, humans are given generally more
training information. Consider the intelligibility tests reported in Chapter 3. The human listeners
were provided not only with examples of the target speaker in isolation but also with examples of
the target and jammer mixed at the TJR at which the test sentence pairs were to be presented (see
Section 3.3). Thus, the question of what constitutes reasonable or unreasonable a priori information
needs to be addressed. While it may be unreasonable to provide a cochannel talker interference
suppression system with an a priori pitch track of both the target-and the jammer (such a pitch
track would never be available in practice), it may be reasonable to provide the system with some
long-term, test-utterance-independent, speaker-dependent information such as the average pitch of
either the target or jammer, the long-term spectrum of either or both of the speakers, or a set of
likely spectral envelopes for either or both of the speakers. While a speaker-independent cochannel
interference system would seem preferable to a speaker-dependent system, it is difficult to justify
working on the former if one cannot achieve the latter. Thus, the cochannel labeling system allows
the incorporation of speaker-dependent test-utterance-independent information — information that
has not been used in previous separation schemes.

4.1.3 A General Suppression Strategy

A third reason for pursuing speaker activity labeling is that it suggests a general separation
strategy, namely to

o pass unmodified all segments of speech hypothesized to be the target,
o completely reject all segments of speech hypothesized to be the jammer, and

o process all segments of speech hypothesized to be the sum of the target and jammer.
In the simplest case, this processing could consist of mere attenuation.
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4.2 Algorithms

This section describes two algorithms which were studied- to perform speaker activity detec-
tion. Each of-the detectors described -below can be modeled as a black box having-a set of inputs
and a set of outputs for each of its two operating modes. During training mode, the detector is
presented with

o speech from the isolated target, from which it makes a target reference(s);
o speech from the isolated jammer, from which it makes a jammer reference(s); and

e speech resulting from summing target and jammer speech, from which it makes a
two-speaker reference(s).

Once training is complete, the detector operates in recognition mode. In recognition mode,
the detector is presented with speech that may be from the isclated target, from the isolated:
jammer, or from the target and jammer simultaneously. The detector's task is to identify which of
the-three possible sources!® produced the input and to report that result. Among other criteria,
the detector is evaluated according to-its ability to correctly classify the unknown inputs.

A vector-quantizing classifier and a modified Gaussian classifier are described below. While
these two detection schemes have similar inputs and outputs, their internal operations differ signif-
icantly.

4.2.1 Vector-Quantizing Classifier

Because vector quantization had been used successfully in-one-speaker speaker identification
systems [54,53], the same techniques were applied to cochannel speaker activity detection. After a
brief description of the generic vector-quantizing classifier, the details of the algorithm as applied to
speaker activity detection are presented. Specifically, the choice of feature vector and some issues
pertaining to training and recognition are discussed.

The Basic Algorithm. Vector quantizers have been used in speech and image coding for
some time. The concise definition used here is borrowed from Linde, et al.[26], with a few minor
modifications.

An N-level k-dimensional vector quantizer is a mapping, g, that assigns to
each input vector, £ = (%o, *-,2k-1), a reproduction vector, § = ¢(F), drawn
from a finite reproduction alphabet, ¥ = {§7;j = 1,---,N}. The quantizer ¢
is described completely by the reproduction alphabet (or codebook) Y together
with the partition, S = {S;;j =1,---, N}, of the input vector space into the sets

15Through the rest of this chapter, the word “source” is used to refer to the set of possible inputs,
i.e., target, jammer, and target plus jammer.
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S; = {% : ¢(F) = §7} of input vectors mapping into the j*» reproduction vector
(or codeword), §7.

“Training” is the task of creating *he codebook Y .16 Typically, some input training speech.is
available that suggests a choice of vectors 77 that represent well the possible input vectors . After
training, the-mapping of input vectors to reproduction vectors (called “coding” for speech compres-
sion applications and “recognition” for speech recognition or speaker ideutification applications) is
merely the application of the g function to newly arriving input speech.

Choice of Feature Vectors. In almost every speech processing system, whether speech .en-
hancement, speech recognition, or speech-compression, the first task is to analyze the input speech
waveform and transform it into some domain in which the “important” features of the signal are
manifest and the “unimportant” features-are suppressed. The vector of low-order cepstral coeffi-
cients [34] has been used extensively-in speech recognition applications due to its ability to represent
the spectral envelope and yet be insensitive to overall level!”, phase, and pitch. For these same rea-
sons, the elements of the feature vectors used in-both-the vector quantizing classifier described here
and the modified Gaussian classifier described in Section 4.2.2 were the 20 mel-frequency weighted
cepstral coefficients immediately following, but not including, the zero’th order coefficient. A block
diagram of the cepstral analyzer is shown in Figure 10. The input speech was Hamming-windowed
every 10 ms using a 20-ms window. Next, the-windowed frame was Fourier-transformed- using a
512-point FFT. A shallow high-pass filter was applied to the log-magnitude of the output for pre-
emphasis. Next, the spectral data were compressed into 30 outputs, where -each output was the
weighted sum of neighboring log-magnitude inputs and where the weighting function was triangu-
lar in shape. The center frequencies of the triangular weighting functions were spread across-the
spectrum such that both the spacing between center frequencies and the bandwidth of the trian-
gles increased with frequency, thereby modeling the frequency sensitivity of the human peripheral
auditory system according to the mel pitch scale. These outputs are referred to as mel-frequency-

weighted filter-bank outputs because they are equivalent to the outputs of a time-domain filter

bank. Finally, an inverse cosine transform was applied to the 30 filter-bank outputs to generate the
cepstrum. A similar front-end analysis system was used previously for speech recognition [40,63].

As discussed in Appendix A, cepstral domain windowing allows an input speech waveform
to be deconvolved into its excitation and spectral envelope components. Because the operation is
nonlinear, windowing the cepstrum of.two-speaker speech cannot cleanly separate the excitation of
the two speech signals from the spectral envelope of the two speech signals. In fact, none of the
analysis systems that rely on the magnitude or power spectrum can be guaranteed to represent well

16This definition presumes the use of a Euclidean distance metric. To allow the use of more sophis-
ticated metrics, it is often desirable to retain rdore training information than just the codebook Y.
See the discussion of distance metrics in Recognition on page 43 for more information.

1755 long as the zero'th order coefficient is not used.
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two-speaker speech. Because of the other advantages mentioned above, the cepstrum seemed to be
the best available analysis domain. An example of a-two-speaker cepstrum is shown-in Figure 17.

Trawning. Given the definition of a vector-quantizing classifier and given the choice of feature
vector described above, there-were several training issues to be addressed, including

¢ the method-of creating training speech for the one- and two-speaker references;
¢ the number of references, i.e., codebook entries, per source; and

e the creation of references, both two-speaker and one-speaker, given the training

speech.

15253310
HAMMING FFT | N ' FILTER || INv.COS
WINDOW I"512-PT ul LOG 1 HPF 1 'sank I xForm-

Figure 10. This block diagram shows-the front end used to create feature vectors for the
speaker activity system.

Creating the Training Speech. The training system required intervals of speech from the
target, jammer, and target plus jammer. To avoid creating references from silent frames of one-
speaker speech, the silence in the one-speaker speech was deleted prior to reference creation. Sim-
ilarly, to avoid training on regions of “two-speaker” speech where, for example, the target was
speaking in isolation because the jammer had paused, the silent intervals from each of the iso-
lated speakers were deleted prior to mixing (see Section 4.3 for more details on silence deletion).
While mixing the two-speaker training speech at 0-dB TJR makes sense if the test speech is known
to be have 0-dB TJR, training at other TJRs or at several TJRs would hypothetically improve
performance for cases where the TJR of the test speech was unknown.

Choosing the Number of References per Source. The number of references per source was
also studied. The simplest scenario would be to use one reference for the target, one reference for
the jammer, and one reference for the target plus jammer. Remembering that for simple vector
quantization a reference is just a vector, training on the target would be the process by which some
target training speech was analyzed into feature vectors from which a single representative vector
was synthesized. Performing the same process for the jammer and the target plus jammer would
yield three vectors total. During recognition, the incoming speech would be analyzed into feature
vectors, one feature vector per frame. For each input feature vector, the distance between it and
each of the reference feature vectors would be calculated. if the closest feature vector was the target
reference, the input frame would be designated target speech. If the closest feature vector was the
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Figure 11. The top graph shows the low-order cepsirum of a frame of the synthesized
vowel /i/, as in “beet,” with a piich period of 5.3 ms and a pitch frequency of 189 Hz.
The middle graph shows the low-order cepstrum of a frame of the synthesized vowel /3-/,
as in “bird,” with a pitch period of 13.5 ms and-a pilch frequency of 74.1 Hz. The botlom
graph shows the low-order cepsirum of the sum of the two synthesized vowels. The X-azis
is labeled in samples consistent with a 10-kHz sampling rate; thus, the indez 10 corresponds
10 1 ms. The specira corresponding to these cepstra are shown in Figure 4.
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jammer reference, the input frame would be designated jammer speech. If the closest feature vector
was the target plus jammer reference, the input frame would be designated target plus jammer.

Even before implementing the single-reference-per-source system, a problem became evident.
Each speaker’s reference would be a long-term cepstral average trained over a large set of different
phonemes. The unknowns to be classified would be short-term observations, typically from a single
phoneme. It did not seem likely, a priori, that a given short-term observation from source j would
bear much more resemblance to-the long-term source j reference than to the long-term references
from the other two sources. To generalize, long-term references, i.e., references produced from the
processing of rather heterogeneous training data, would not be very useful in-classifying short-term
observations, i.e., unknown input data represcnting very short intervals of the test speech. Instead,
performance would hypothetically improve if the amount of heterogeneity in the data over which
each reference was trained matched the expected heterogeneity in the unknown data to be classified.
The vector-quantizing classifier has single frame input observations; thus, it requires references that
are trained over relatively homogeneous training speech. One-way to decrease the heterogeneity of
each reference’s training data is to use multiple references per-source. This allows each reference to
specialize and better represent a certain phoneme or set of phonemes. Each reference is the result
of processing over a subset of the training data, where the subset comprises training vectors that
are close together in the vector space but not necessarily contiguous-in time. The exact number of
references per source was a parameter of the training system.!®

Creating the References. The third issue to be addressed was the actual creation of the
references. With phonetically labeled training speech, it seemed intuitive to supervise the segre-
gation of the training feature vectors on the basis of phonetic characteristics such as voicing or
manner of articulation. Such training is called “supervised” because it requires some form of out-
side information, in this case segmentation and labeling. “Unsupervised” training — clustering —
was also studied.

Unlike supervised training, unsupervised clustering algorithms do not segregate on the basis
of an arbitrary labeling scheme. Rather, the input feature vectors are partitioned into groups of
closely spaced feature vectors. Reference vectors are then created, one per partition, by calculating
the mean of all feature vectors in the neighborhood. The demonstration in Figure 12 and the
speech activity detection experiments described below used the following unsupervised clustering
algorithm [26]:

Step 1. Find the centroid of all the input vectors. Enter the centroid into the codebook.

18For computational reasons, the number of references per source should be as small as possible.
First, more references require more storage space. Second, more references require more compu-
tation during recognition. Thus, it is usually not feasible to keep, say, every training vector as a
reference (“nearest-neighbor” classification).
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Figure 12. The figure shows the output of the first and final iterations- of an automatic
clustering algorithm operating on two-dimensional vectors: After-the first pass, all input
vectors are in class 0. The single codebook entry is designated by the asterisk. After the
final pass, the input vectors are split into four groups with four codebook entries.

Step 2. Choose a codebook entry from the codebook. Create from this old codebook entry
two new codebook entries that deviate slightly from the old codebook entry. For
example, if the old codebook entry was 77/, the two new entries wotild be 7"¢%? and

772, where

~newl

Y =Y

~old + g’ gnew2

Delete the old codebook entry.

~old

— €, where € is a small random vector.

Step 3. Associate each input vector with its nearest codebook entry. For each codebook
entry there is now a set of associated input vectors.

Step 4. Find the centroid of éach set of associated input vectors. These centroids form a

new codebook.

Step 5. For each input vector, calculate its distance from the nearest new codebook entry.

If the average distance is small enough, exit.

Step 6. If the new codebook is not the same as the old codebook, substitute the new code-

book for the old codebook and go to Step 3.

Step 7. If the new codebook is the same as the old codebook and if the number of codebook

entries is below the ceiling value, go to Step 2.

Step 8. Exit.
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Parameters varied include the method by which an old codebook entry is selected for splitting
(Step 2), the maximum number of codebook entries allowed, i.e., the number -of references per
source (Step 7), and-the average distance threshold (Step 5).

Recognition. With a training specification in hand, two important recognition issues were
addressed. a choice of metric to be employed when measuring-distance between reference vectors
and unknown input vectors, and the trade-off between short- and long-term resolution. Both of
these issues are explained below.

Choosing a Distance Metric. There are many ways to measure the distance between two
vectors. One option considered was the Euclidean distance measure, where the distance d between
two column vectors Z and § is

i=\G-87G-5 . (9)

Alternatively, the weighted Euclidean metric

d=\G-8TWE-3) (10)

where the ™ matrix is fixed and possibly diagonal, was also investigated. Weighting allows one to
place more or less emphasis on each dimension of the cepstral vector. Considering the case of talker
activity detection, suppose that Z; is the input vector from frame i of the unknown input speech.
During recognition, the distance between &, and each reference vector #7¥, the k’th reference vector
of source j, must be calculated. One metric employed previously in one-speaker identification was
the so-called Mahalanobis squared distance [51,17], where the distance dJ between £, and 77 is

= (g7 - )7 57 (G - &) (1)

where S ! is the inverse of the sample covariance matrix of all source j training feature vectors.
This choice of d equalizes the experimentally measured variaticn within and across each dimension
of the cepstrum and, therefore, was the metric used for vector-quartizing classifier experiments.
To use this measure, the training system was modified such that its output was not only a set of
reference vectors §7* for each source j but also one S; or S; 1 for each source j.

For each frame 1, df was calculated exhaustively for all references 7% of source j. The
distance between the closest reference of source j and the input &; was designated d,”. The source
J with minimum ci,-’ across all sources was designated the winner of frame 4.

Setting the Resolution. After choosing a distance metric, the trade-off between short- and
long-term resolution was addressed. Consider the recognizer that analyzes the incoming speech,
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converts each waveform frame into a cepstral feature vector, and then compares the unknown
feature-vector to the set of references. Employing an exhaustive search, the reference vector closest
to the unknown vector is-found-and the source (target, jammer, or target plus jammer)-associated
with that winning vector is chosen as the winner for that frame. Given the 10-ms choice of frame
time, every 10 ms a new winner would be chosen. Assuming that the recognizer makes-mistakes,
performance might be improved- at the cost-of decreased resolution by “smoothing” the output of
the recognizer. As-an example of one simple smoothing technique, specify that for-every N frames
the source that won the most frames should be output as the N-frame winner. Alternatively,
rather than making a hard decision on each frame, a running score could. be maintained of how
close each source was in each frame. At the end of the N-frame interval, the source that had overall
‘minimum distance would be declared the winner. This second smoothing algorithm was employed
in the experiments described below. Either of the two types of smoothing would probably cause
a performance increase during long regions of a single source and-a performance decrease during
transitions from one source to-another.

Both uniform-segmentation, i.e., interval lengths fixed at N frames, and adaptive segmenta-
tion, i.e., interval lengths of average-length N frames, were studied. Adaptive segmentation was
performed via acoustic segmentation, as proposed in Glass and Zue [14,15], and was implemented
as follows:

Step 1. Run the unknown speech input through a mel-frequency-weighted filter-bank front
end, creating one feature-vector per 10 ms frame.?

Step 2. Create one “segment” per frame, where a segment initially consists of that frame’s
feature vector and a count of how many frames have been incorporated into the
segment. Initialize the count of each segment to one.

Step 3. Starting from the earliest segment, calculate the Euclidean distance, §, between the
vectors of segments ¢ and ¢ 4+ 1. If § is below the current threshold A, merge the
two segments. Merging two segments means creating a new segment whose vector
is the average of the two-old segments weighted by their counts. The count of the
new -segment is the sum of the counts of the old segments. After merging two old
segments to create a new segment, the old segments are discarded. Continue until
reaching the last segment.

Step 4. If Step 3 resulted in at least one merge, go to Step 3. Otherwise, calculate the average
count of the segments. If it is greater or equal to N, exit. Otherwise, increment the
threshold A and go to Step 3.

19The acoustic segmentation system used filter-bank vectors, not cepstral vectors, as input. Filter-
bank vectors were used because they were a by-product of the mel-weighted cepstral analysis (i.e.,
they are available) and they more closely matched the system described in Glass and Zue [14,15].
The cepstral vectors might have worked equally well.
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The important output of segmentation was not the vector associated with each segment, but rather
the count, which was used to partition the incoming signal into relatively homogeneous contiguous
regions. An-example is shown in Figure 13.

While it was reported in Glass and Zue {14,15] that no single threshold-allows 1:1 mapping
from segments to phonemes, the process was useful in finding homogeneous regions of the input,
with the extent of the homogeneity within a segment inversely related to N.

In the context of the speaker activity problem, the acoustic segmentation algorithm was used
to cluster contiguous homogeneous frames in the cochannel input. To the extent that speaker onsets
and offsets-caused a sharp discontinuity in the stream of cepstral vectors, acoustic segmentation
can place a partition at speaker onsets and offsets. This can result in intervals containing only one
source (target, jammer, or both) uniformly throughout the interval, thereby improving performance
of the speaker activity system.

‘Whether using the fixed or adaptive segmentation, in an interval of length n frames the
speaker activity winner was chosen as the source j with minimum accumulated distance d7,

>
dl = - . (12)

4,2.2 Modified Gaussian Classifier

As Gaussian classification had also been used successfully in one-speaker speaker identification
systems [51,12,13], the same techniques were applied to cochannel speaker activity detection. After
a brief description of the generic Gaussian classifier, the details of the algorithm as applied to
speaker activity detection are presented. As in the case of the vector-quantizing classifier, the
choice of feature vector and issues pertaining to training and recognition are discussed.2?

The Basic Algorithm. Similar to the vector-quantizing classifier described above, the Gaus-
sian classifier also has training and recognition modes. Output feature vectors from each source
are modeled by a p-dimensional Gaussian probability density, where p is the number of elements
in the feature vector. During training, an estimate of the mean, /7;, and covariance matrix, Aj, of
each source j’s feature vectors are obtained by calculating the sample mean and covariance of each
source j’s training feature vectors. Given the Gaussian model assumption, the mean and covari-
ance completely characterize the source j. During recognition, IV feature vectors £; are observed.
Assuming these N input feature vectors were all produced by one source but that the noise from

20What makes this classifier “modified Gaussian” as opposed to “Gaussian” is described in Recog-
nition on page 48.
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Figure 13. The top diagram shows the acoustic segmentation of the utterance whose
spectrogram appears in the lower diagram. The z-azis is time and the y-azis is threshold
level. As the threshold level increases, the average length of the segments_increase. Over
a wide range of talkers and utterances, there is, unfortunately, no single threshold that
segments one phoneme per segment. The text of the utterance is “their swell mint poses,”
where the final “es” in “poses” has been truncated.
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one-observation to the next was uncorrelated (i.e., independent observations),-the probability that
‘the unknown input vectors £; were produced by source j is

P; = Prob(observing {&;}]|source j is active)
N 1 1 T
_ A= oaTp =lp= e
= 11'=l1 (____(?-7?)”/2{/&5!1 Izexp{ 2(3, - 1557 AT (2 p_,)}) . ‘ (13)

The task of this maximum likelihcod recognizer is to find the source j whose Gaussian model best
fits the input feature vectors z;, i.e., the j that maximizes P;.

Appendix C shows that the problem of finding the j that maximizes P, is equivalent to finding
the j that maximizes

Aj = mytc (14)

m; = -—g log 27 — -;-log Al + %logN (13)

-LE-EH HE-5)

S —_—
G = —gm—z-—alog%—Nz 110g}A5|—%logN (16)
N-1 -1

Z = Sample mean of unknown input vectors
S = Sample cevariance matrix of unknown input vectors
tr = Trace operator (sum of main diagonal elements).

“Training” is the task of creating the set of reference mean vectors, ji;, and covariance ma-
trices, A;, from the available source j training speech. “Recognition” is the task of calculating the
sample mean, Z, and sample covariance, S, of 2 set of feature vectors collected from an unknown




source, inserting them into Equation (14), calculating the value of A; for all reference sources j,
and choosing as the winner that source j having maximum J,, i.e., the maximum likelihood j.

Chouce of Feature Vectors. The elements of the feature vectors used by the Gaussian classifier
were identical to those used in the vectoi-quantizing classifier described previously in (' “ice of
Feature Vectors on page 38, uamely, the 20-mel-frequency-weighted cepstral coefficients imm:  “ately
following the zero'th order coefficient. A new feature vector was produced every 10 ms using a 20-
ms-long Hamming window.

Trawming. Given the definition of a Gaussian classifier aud given the choice of feature vector
described above, there were still a number of options studied regarding the training of the classifier.
Tue problem of creating training speech has already been addressed in Training on page 38. The
issues relating to the number of references per source and the creation of those references were still
relevant in the Gaussian classifier and differed somewhat from the vector-quantizing classifier; they
are described below.

Choosing the Number of References per Source. As in the case of the vector-quantizing
classifier, system performance would hypothetically improve if the amount of heterogeneity in the
data over which each reference was trained matched the expected hete.ogeneity in the unknown data
to be classified. Thus, more references per source would be requirzd as the number of frames per
classification was decreased. Similarly, fewer references per source would be used as the classification
interval length increased.

Creating the References. The same techniques (supervised training using phonetic labels
and unsupervised training using clustering) were used to segregate the training data into subsets
over which references would be created. In both cases the covariance of the vector subset contribut-
ing to each reference, as well as its mean, was stored, i.e., a separate covariance was stored for each
reference of each source.?!

Recognition. Two important recognition issues were addressed, namely the relation between
the m and ¢ variables in Equation 14 (the source of the word “modified” in the phrase “modified
Gaussian classifier”) and the trade-off between short- and long-term resolution. Both of these issues
are explained below.

The Mean/Covariance Trade-Off. Equation 14 split the likelihood variable A; into two
parts, m,; and ¢,. m, contains constants, terms depending only on the reference j, and one term
depending on the sample mean of the input, Z. ¢, also contains constants, terms depending only
on the refer. ice j, and one term depending on the sample covariance of the input, S. In the true
Gaussian model, m, and ¢, are weighted equally. However, using a “modified Gaussian model” {13}
one can weight them unequally, i.e.,

2115 the case of the vector quantizer, only one covariance per source was stored.
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M=axmj+(l-a)xe n

with the weighting factor a taking values from 0 to 1. The motivation for using a # 0.5 stems from
the likelihood that the communications channel over which the input feature vectors are collected
will not be the same as the channel over which the reference vectors are collected. Modeling each
channel as a quasi-stationary linear filter, the cepstrum of the channel is an additive component
to each feature vector. Therefore, the mean terms of m, are affected by the channel cepstrum,
whereas the covariance terms in c,, which by definition of covariance compensate for the mean, are
not affected by the unwanted additive channel cepstrum. Improved results were expected using
0.0 £ o £ 0.5, thereby more heavily weighting the more reliable ¢, component of A;. Through
the rest of this report, the terms “modified Gaussian classifier” and “Gaussian classifier” are used
interchangeably.

Setting the Resolution. The trade-off between short- and long-term resolution must also
be addressed. Using more vectors in the calculation of Z and S should yield better results in long
single source regions at the expense of poorer performance in the regions of transition between
one source and another. In the vector-quantizing classifier, each frame was scored and distances
were accumulated across frames to find the most likely source. On the other hand, the modified
Gaussian classifier requires the sample covariance, S, of the input vectors before calculating a
score. Thus, segmentation must occur prior to scoring. As before, both fixed segmentation (forming
segments with uniform numbers of frames) and adaptive segmentation {forming segments by finding
homogenecus sets of frames) were employed.

4.3 Experiments

This section describes a set of speaker activity detection experiments conducted to compare
the algorithms described above. Issues addressed include the choice of speech data bases and a list
of input parameters tested.

4.3.1 Data Bases

Ber sase one of the two training schemes described required labeled training speech, the obvi-
ous cre-ce of data base was the phonetically labeled MIT-CBG data base described in Section 3.2
[43]. While this data base does provide an ample supply of sentences per speaker, drawing con-
clusions from testing on only three speakers is risky. Therefore, a second data base with a greater
number of speakers was used to confirm the results obtained using the three-speaker data base. This
second data base is a 12-speaker subset of the DARPA resource-management data base [44]** and

22The sentences chosen were extracted from the speaker-dependent training (“tddt”) portion of the
data base. The 16-kHz sampling rate version of the data base is available on magnetic or optical
media from the National Institute of Standards and Technology.
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consists of meaningful interrogative sentences that might be input to a naval resource management
system, e.g.,

Is the Kirk’s speed greater than the Ajaz’s speed?23

Because the DARPA data base is not phonetically labeled, it could be used-only in unsupervised
training experiments. When testing on either data base, all experiments were run-on all pairs of
target and jammer.

4.3.2 Parameters

Trawnang Speech. As training data is likely to be difficult to obtain in an operational environ-
ment, a classifier should achieve high performance with a minimum amount of training data. Most
of the experiments with the MIT-CBG-data base used 100 training sentences per speaker, far more
training-data than an operational system is likely to have. Experiments with the DARPA data base
used 20 training sentences per speaker. For one-speaker supervised training, each speaker’s speech
was partitioned on a phoneme-by-phoneme basis into the desired number of classes (two-classes for
voiced and unvoiced). One reference was created for each of the resulting classes. All waveform
frames labeled as silence were discarded completely for both one- and two-speaker training. After
training on the target and the jammer in isolation, two-speaker supervised training speech was
performed as follows. Using the same classes created for one-speaker training, speech from target
class ¢ was added to speech from jammer class j at the training TJR, from which two-speaker
reference r,, was generated. Thus, if the one-speaker speech had been partitioned into two classes
resulting in two references, four parcels of two-speaker speech-would have been created resulting in
four references.

For one-speaker unsupervised training, each speaker’s speech was-pz;rtitioned using.unsuper-
vised clustering. One reference was created for each of the resulting classes. All speech frames
having energy 20 dB below the average energy of the sentence were discarded completely for both
one-speaker and two-speaker training. After training on the target and the jammer in isolation,
two-speaker supervised training speech was performed as follows. The isolated target and jammer
sentences, having had their silent frames deleted, were added together at the training TJR. The
resulting speech signal was partitioned using unsupervised clustering, with one reference created for
each of the resulting classes. In contrast to the supervised training case, the number of two-speaker
references created could be set independent of the number of one-speaker references.

The choice of a cepstral feature vector ensured that speaker i’s one-speaker references at 0 dB
were the same as his references at -6 dB. Only the two-speaker references were affected by choice
of training TJR. When training at TJRs equal to 0 dB, only one two-speaker reference was created
for each pair of speakers. At TJRs not equal to 0 dB, two two-speaker references were created per

23Presumably, Kirk and Ajaz are names of ships.
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pair of speakers, one with speaker ¢ stronger than speaker j and one with speaker j stronger than
speaker 1.

Test Speech. In general, recognizers are tested on as much input as possible to insure that
recognizer performance is not being over- or understated due to the particular choice of input
utterances. On the other hand, the computer running time of an experiment is usually proportional
to the number and length of the test utterances classified. Furthermore, the amount of disk space
tequired to hold vast amounts of speech from multiple speakers can become prohibitive. As a
compromise, experiments with the MIT-CBG data base used 50 test sentences per speaker. These
test sentences were different from the training sentences. When running experiments using the
DARPA data base, 20 test sentences per speaker were used. All one-speaker speech frames having
energy more than 20 dB below the average energy of the sentence were discarded in both one- and
two-speaker testing. Two-speaker test speech was created by summing the one-speaker sentences
(after deleting the silence) at the testing TJR. For each pair of target and jammer, the recognition
experiments were conducted on equal amounts of the following;:

e target speech (silence deleted),
¢ jammer speech (silence deleted), and
o target plus jammer speech (silence deleted before addition) summed at some TJR.

The three-speaker MIT-CBG required six runs of target and jammer. The 12-speaker DARPA
data base required 132 runs. Note that the choice of training TJR and testing TJR could be
set independently, e.g., 0-dB test speech could be classified against references created at -6 dB.
Figure 14 shows a diagram of an example run.

Number of References. When using supervised training, the number of references per speaker
was chosen by partitioning the set of English phonemes into a number of classes. The number of
classes and their constituent phonemes was based on intuition and, therefore, arbitrary. Three
different partitioning schemes were tested. The first grouped all phonemes together; in this scheme
there was one reference for the target, one for the jammer, and one for the sum. The second
partitioning scheme grouped phonemes on the basis of whether they were voiced or unvoiced; there
were two references for the target, two for the jammer, and four (2 x 2) for the sum. The final
partitioning scheme grouped phonemes into the eight classes listed in Table 7, resulting in eight
target references, eight jammer references, and 64 sum references. Note that the number of sum
references was always the square of the number of one-speaker references. Had a smaller number of
two-speaker references been desired, the one-speaker speech could have been reclassified into fewer
classes before the two-speaker references were created. The mapping of phonemes to classes was
determined by manner of articulation with the help of the International Phonetic Alphabet (IPA)
[32,21].

The unsupervised training system was somewhat easier to implement in that no pLoneme
classification was necessary, i.e., nothing other than the desired number of references was specified.
Furthermore, the number of references for the two-speaker speech could be set independently (not
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REFERENCES
mp mm +mp
mm mp +mm
ms mm +ms
mm ms + mm
ms mp +ms
mp ms +mp

UNKNOWN TEST SPEECH
mm mp mm + mp
mp mm mp + mm
mm ms mm 4+ ms
ms mm ms+ mm
mp ms mp +ms
ms mp ms +mp

An ezample of a speaker activity experiment on the three-speaker MIT-CBG
data base, using references created at -3 dB to classify test speech created at -6 dB. The
three MIT-CBG speakers are named mm, mp, and ms. For each triplet of references, three
trials were conducted: one on test target speech, one on tesi jammer speech, and one on
test two-speaker speech; a total of 18 trials were conducted. For training and test TJRs
equal to 0 dB, some of the trials are not unique and were skipped:

TABLE 7

Mapping of Phonemes to Eight Phonetic Classes

€0 4 u 3 4, e, a%, 9,1, 1, =, A, U,

Vowels/Diphthongs G oV ¥ o¥ 25
Semivowels Loy w

Nasals mn 35, m,n, 0, f
Voiced Fricatives z, 3, d3, d,v,
Voiced Stops b, d g ¢

w h &

Unvoiced Fricatives | s, f, 1, 8, f
Unvoiced Stops p. t k
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necessarily equal to the square of the number of references for the one-speaker speech). The
following numbers of references per speaker were studied: 1, 2, 3, 8, 9, 20, 30, and 50.

In all cases, target, jammer, and sum had identical numbers of references, e.g., two for the
target, two for the jammer, and two for the sum.

Segmentation Issues. Two types of segmentation of the unknown input utterances were
tested. The first was fixed segmentation, in which the input was divided into segments of uniform
length before (for the Gaussian classifier) or after (for the vector-quantizing classifier) analysis.
Typical analysis lengths included 50, 100, 150, and 1000, corresponding to 5, 10, 15, and 100 frames,
respectively. Adaptive segmentation based on the acoustic segmentation algorithm described earlier
was also tested. Typical specified average interval lengths were also 50, 100, 150, and 1000 ms.

Parameters Set from Initial Evaluations. Some parameters were fixed for all formal evalu-
ations based on the results of preliminary tests. The Mahalanobis distance was used exclusively
throughout all vector-quantization experiments. The value of o was set to 0.3 for all modified
Gaussian experiments, thereby favoring the covariance component of X. Finally, the covariance
matrix was diagonalized for all vector-quantization experiments, with the full covariance matrix
used for all modified Gaussian experiments.

4.4 Results
4.4,1 Raw Data

The formal experiments were run over a period of several months on a Sun 4/110 workstation
Because the MIT-CBG data base had only three speakers (six pairs of target and jammer) compared
to the 12-speaker DARPA data base (132 pairs), the MIT-CBG data base was evaluated first. Once
all MIT-CBG runs were completed, 2 typical parameter set was tested on the DARPA data base.
Preliminary results on the Gaussian classifier (which was evaluated first) showed that unsupervised
training was equal or superior to supervised training. As a result, the vector-quantizing classifier
was evaluated only in the unsupervised training mode.

The summarized outputs of the experiments are shown in Tables 8-20. For each entry in
each table, two numbers are reported. The first number is the performance as a function of input
parameters measured in percent correct, where performance is the number of frames identified
correctly divided by the total number of fran:es tested. The second number is the standard deviation
measured across all speaker pairs and sources tested. Tables 21-23 show representative confusion
matrices.
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TABLE 8
Speaker Activity Results — Baseline.

Reference Information Adaptive Interval Average Length
#/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct o Correct o Correct o Correct 4
1 1 65.4 | 123 69.4 | 114 743 | 114 95.9 1.6
2 2 71.8 | 107 76.3 7.2 76.9 5.3 48.7 31.7
3 3 72.4 4.2 76.4 6.7 75.6 8.9 721 333
8 8 77.3 5.3 80.0 2.7 78.5 5.8 71.0 26.8
9 9 77.3 6.9 79.9 37 77.6 7.8 63.7 35.5
20 20 79.5 8.7 76.0 32 714 | 101 57.6 38.0
NOTE: Results are presented for modified Gaussian classification (full covariance) on the MIT-CBG data base
using unsupervised training. Both two-speaker training speech and two-speaker test speech were mixed at 0-dB
TJR. Segmentation of test speech was performed using adaptive acoustic segmentation. "Correct” indicates
percentage of intervals identified correctly. “¢” indicates standard deviation across all speaker pairs and
source types.

TABLE 9
Speaker Activity Results — DARPA Data Base
Reference Information Adaptive Average Interval Length
#£/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct 4 Correct | © Correct o Correct G
9 9 792 | 93 826 | 8.3 82.5 | 10.9 738 | 33.6
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TABLE 10

Speaker Activity Results — Vector-Quantizing Classifier

Reference Information Adaptive Interval Average Length.
#/spkr | #/spkr-pair 50 ms 100.ms 1000 ms
Correct o Correct 4 Correct o
9 9 61.0 12.4 66.4 13.2 715 13.2
20 20 65.8 117 71.9 12.4 76.9 11.6
50 50 69.0 | 115 755 | 118 80.2 | 106
TABLE 11

Speaker Activity Results — Short Training (using only ten sentences per

speaker for training)

Reference information Adaptive Average Interval Length
#/spkr | #/spke-pair 50 ms 100 ms 150 ms 1000 ms
Correct o Correct o Correct o Correct o
9 9 718 | 5.2 728 | 37 711 | 89| 724 | 278
TABLE 12
Speaker Activity Results ~ Supervised Training
Reference Information Adaptive Interval Average Length
#t/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct g Correct o Correct o Correct 4
1 1 66.7 | 149 71.8 | 10.1 77.0 8.9 95.3 33
2 4 747 | 116 80.0 9.4 82.8 7.8 68.2 | 35.4
8 64 67.9 | 209 711 | 19.9 69.4 | 21.0 39.8 | 445
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TABLE 13
Speaker Activity Results - Fixed Segmentation

Reference Information Fixed Interval Length
$£/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct c Correct 4 Correct o Correct o
67.0 13.8 72.9 10.5 77.8 8.1 96.7 23 )
69.4 5.0 70.6 7.3 69.2 9.2 64.9 | 27.1
73.3 7.8 70.4 9.7 68.2 14.5 62.2 35.4
20 20 75.2 101 72.7 7.5 69.5 11.0 55.5 335
TABLE 14
Speaker Activity Results - Diagonal Covariance
Reference Information Adapt Int Avg Len
#/spkr | #/spkr-pair 100 ms 1000 ms
Correct 4 Correct o
1 1 57.2 15.3 92,5 4.1
3 3 609 | 112 57.3 | 368
9 9 67.3 8.2 51.7 | 402
TABLE 15

Speaker Activity Results — Training/Testing at -6 dB (training and test
speech were both mixed at -6-dB TJR)

Reference information Adaptive Interval Average Length
#/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct o Correct o Correct o Correct 4
643 | 128 | 680 | 134 | 722 | 130 | 954 | 26 ¥
3 3 71.5 5.4 74.8 6.0 75.1 7.2 69.3 | 33.1 -
75.6 8.8 77.5 5.4 75.5 8.2 63.5 34.6
20 20 77.7 | 10.1 74.5 5.0 70.0 | 101 56.5 | 34.8

54




TABLE 16

Speaker Activity Results — Testing at -6 dB (the test speech was mixed at
-6-dB TJR; the training speech:was mixed at 0-dB TJR)

Reference Information Adaptive Interval-Average Length )
#/spkr | #/spkr-pair 100 ms 150-ms 1000 ms
Correct o Correct 4 Correct 4
68.6 | 11.2 733 | 109 95.7 1.6
3 735 4.3 73.3 6.1 69.3 | 324
774 5.5 75.5- 7.4 61.4 | 36.0
TABLE 17

Speaker Activity Results — Training at -6 dB (the training speech was mixed
at -6-dB TJR; the test speech was mixed at 0-dB TJR)

Reference Information Adaptive Interval Average Length
#/spkr | #/spkr-pair 100 ms 150 ms : 1000 ms
Correct c Correct o Correct | ©
67.1 | 110 714 | 108 945 | 3.0
75.8 6.3 75.6 7.9 70.1 | 335
77.3 6.9 75.2 9.8 58.0 | 37.2
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TABLE 18

Speaker Activity Results — Training/Testing at -12 dB (training and test
speech were both mixed at -12-dB TJR)

Reference Information Adaptive Interval Average Length
#/spkr | #/spkr-pair 50 ms 100 ms 150 ms 1000 ms
Correct o Correct o Correct o Correct g
63.0 | 16.1 66.8 | 17.5 704 | 17.3 94.0 5.4
3 68.1 9.8 70.7 9.7 711 | 105 67.0 | 32.8
71.8 | 129 73.3 | 106 721 | 105 63.2 | 36.8
TABLE 19

Speaker Activity Results — Testing at -12 dB (the test speech was mixed at
-12-dB TJR; the training speech was mixed at 0-dB TJR)

Reference Information Adaptive Interval Average Length
#/spkr | #/spkr-pair 100 ms 150 ms 1000 ms
Correct o Correct o Correct 4
1 65.4 | 124 700 | 114 93.8 39
68.0 8.4 67.9 6.7 65.1 | 321
9 71.0 | 140 688 | 13.2 56.3 | 39.9
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TABLE 20

Speaker Activity Results — Mixed- Training.

TJR of Test Speech Adaptive Interval Average Length
# [spkr-pair 100 ms 150 ms 1000 ms_
Correct o Correct o Correct o
0dB 772 | 6.7 748 | 104 67.1 | 39.4
-6 dB 76.6 57 T4.2 8.6 65.4 35.1
-12 dB 71.7 10.1 69.2 9.1 61.6 35.3

NOTE: The two-speaker training speech was not mixed at a uniform TJR. Rather,
one-third was mixed at 0-dB TJR, one-third-at -6-dB TJR, and one-third at -12-dB
TJR. All experiments used nine references per speaker(-pair)

TABLE 21

Speaker Activity Results — Confusion Matrix

Hypothesized Source

Actual One Speaker Two Speakers
Source Target | Jammer Both
One Speaker Target 80 5 15
Jammer 5 80 15
Two Speakers Both 10 10 80

NOTE: A confusion matrix is presented for modified Gaussian classification (full
covariance) on the MIT-CBG data base using unsupervised training. Results are
in percent correct detection. Both two-speaker training speech and two-speaker
test speech were mixed at 0-dB TJR. Segmentation_of test speech was performed
using adaptive acoustic segmentation. The experiment used nine references per

source. Clearly, performance was not a function of the number of active speakers
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TABLE 22

Speaker Activity Results — Confusion Matrix

Hypothesized Source

Actual: One Speaker Two Speakers
Source Target | Jammer Both
One Speaker Target 82 5 13
Jammer 5 73 22
Two Speakers Both 7 33 61

factor was significant for this experiment [F(1,5) = 33.4]

NOTE: The confusion matrix is presented for modified:Gaussian classification
(full covariance) on the-MIT-CBG data base using unsupervised training.
Results are in percent correct detection. The training TJR was nonuniform, with
one-third of the-training speech mixed at 0-dB TJR, -6-dB TJR, and -12-dB
TJR. The test speech was mixed uniformly at -12-dB TJR. Segmentation of test
speech was performed using adaptive acoustic segmentation. The experiment
used nine references_per source. ANOVA showed that the number-of-speakers

Using the experiment of Table 8 as a baseline, i.e.,

e modified Gaussian classifier with full covariance and acoustic segmentation,

e unsupervised training,

e 0-dB two-speaker reference and unknown speech, and

e the MIT-CBG data base,

Figures 15-26 show the effect of varying the classification and training parameters. For the most
interesting cases, ANOVA was performed on the arcsine transformed data to determine the signif-

icance of the results. 24

The variance of the estimate fgr each interval is 6% = p — p? and the variance of the sample
mean of N independent trials is £5/~. The variance of the difference between two sample means is

— 2 » -
g(gﬁp_), having a maximum value of 55 at p = 3. Thus, one can have 95 percent confidence (two

24 Alternatively, the identification of each interval can be modeled as a Bernoulli trial with proba-

bility p.
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TABLE 23
Speaker Activity Results — Confusion Matrix

“Hypothesized Source .
Actual One Speaker |  Two Speakers
Source Target | Jammer " Both
One Speaker | Target 87 4 i 9
Jammer 4 87 9
Two Speakers ‘Both 13 13 74

The confusion matrix is presented for modified Gaussian classification

(full covariance) on the DARPA data base using unsupervised training.
Results are in percent correct detection. Both two-speaker training speech
and two-speaker test speech were mixed at 0-dB TJR. Segmentation of test
speech was performed using adaptive acoustic segmentation. The e’xperiment
used nine references per source. ANOVA showed that the number of speakers
factor was significant for experiment [F(1,65) = 291.7]

standard deviations) that the difference between two sample means is significant if that difference

is .reater than @ . As the MIT-CBG experiments processed 76,474 frames and the DARPA
experiments processed 1,020,626 frames, the fcliowing differences in sample means are significant
at the 95 percent confidence level:

o MIT-CBG data base, 5 frames per interval: differences of 1 percentage point are
significant,

¢ MIT-CBG data base, 10 frames per interval: differences-of 2 percentage points are
significant,

¢ MIT-CBG data base, 15 frames per interval: differences of 2 percentage points are
significant,

e MIT-CBG data base, 100 frames per interval: differences of 5 percentage points are
significant, and

e DARPA data base, all values of frames per interval: differences of 1 percentage point
are significant.

4.4.2 Xey Observations

Some important observations can be drawn from the speaker activity results:
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o Performance on the DARPA and MIT-CBG data bases was comparable (see Fig-
ure 15).

¢ The vector-quantizing classifier required many more references per speaker and speaker-
pair to achieve the same pe:®; rm~nre as the Gaussian classifier (see Figure 16). This
makes the vector-quantizing classifier less attractive computationally.

¢ Reducing the amount ¢© .raining data by a factor of 10 generally degraded perfor-
mance by only about 1J percent (see Figure 17; result significant for the 50-, 100-,
and 150-ms interval lengths with 95 percent confidence, F(1,8) = 47.7).

¢ Unsupervised training resulted in performance equivalent to supervised training (see
Figure 18; no significant difference, F(1,24) = 0.13).

¢ Adaptive acoustic segmentation resulted in better performance than fixed segmenta-
tion (see FigL-: 19; result significant with 99.5 percent confidence, F(1,36) = 37.8).

¢ For the Gaussian classifier, a full covariance matrix resulted in better performance
than a diagonal covariance (see Figure 20, result significant with 99.5 percent confi-
dence, F(1,8) = 33.3).

o Training and testing at TJRs other than 0 dB generally degraded performance (see
Figures 21-26). Part of vhe rclative insensitivity to TJR is due to the choice of a
cepstral feature vector, which is insensitive to overall energy, e.g., -6-dB one-speaker
speech is indistinguishable from 0-dE one-speuker speech. Thus, only the two-speaker
regions of training and recognition speech were affected by a change in TJR. The
effect of TJR on performance was significant when training TJR matchad test TIR
(see Figure 21, result significant with 99.5 percent ccufidence, F(2,40) = 14.0) and
when training TJR was not uniform (see Figure 26, result significant with 99.5 percent
confidence, F(2,120) = 5C.6).

o A result common tc all experiments was that system performance improved when the
amouut of heterogeneity in the data over waick each reference was trained matched
the hetercgeneity in the unknown data to be classified. Thus, with average intervals
of 1 sec, performence peaked at one reference per speaker and speaker-pair, while
as many «s 20 reierences were required when interval lengths were shortened to 50
ms per interval. The interaction between uumber of references and interval size was
significant with 99.5 percent confidence (F(9,36) = 5.3).25

%5For the Gaussian classifier, computational constraints prohibited experiments with interval
lengths shorwer than 50 ms. Even kad interval lengths Lelow 50 ms been investigated, the number
of references required would have been greater than 20, adding additional computational strain.
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Figure 15. Comparison of the DARPA vs. MIT-CBG data base. All experiments
used modified Gaussian classification (full covariance), unsupervised training, two-speaker
training and test speech mized at 0-dB TJR, and adaptive acoustic segmentation. The X-
azis measures interval length in milliseconds and the Y-azis measures performance in
percent correct detection.
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Figure 16. Performance of the vector-quantizing classifier. All experiments used un-
supervised training, two-speaker training and test speech mized at 0-dB TJR, adaptive

acoustic segmentation, and the MIT-CBG data base.
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Figure 17. Comparison of training with 100 sentences per source vs. 10 sentences per
source. All ezperiments used modified Gaussian classification (full covariance), unsuper-
vised training, two-speaker training and test speech mized at 0-dB TJR, adaptive acoustic
segmentation, the MIT-CBG data base, and nine references per speaker(-pair). Consider-
ing only the 50-, 100-, and 150-ms interval lengths, the difference between the two training
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types was significant with 99.5 percent confidence [F(1,8) = 47.7].
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Figure 18. Comparison of supervised vs. unsupervised training. All experiments used
modified Gaussian classification (full covariance), two-speaker training and test speech
mized at 0-dB TJR, adaptive acoustic segmentation, and the MIT-CBG data base. For
supervised training, the number of references per speaker pair is the square of the number of
references per speaker. For unsupervised training, the number of references per speaker-
pair is equal to the number of references per speaker. The difference between the two
training types was insignificant [F(1,24) = 0.13].
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Figure 19. Comparison of adaptive acoustic segmentation vs. fized segmentation. All
experiments used modified Gaussian classification (full covariance), unsupervised training,
two-speaker training and test speech mized at 0-dB TJR, and the MIT-CBG data base. The
difference between the two segmentation types was significant with 99.5 percent confidence
[F(1,36) = 37.8].
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Figure 20. Comparison of a full- vs. diagonal-covariance classification. All experiments
used modified Gaussian classification, unsupervised training, two-speaker training and test
speech mized at 0-dB TJR, adaptive acoustic segmentation, and the MIT-CBG date base.
The difference between the two covariance types was significant with 99.5 percent confi-
dence [F(1,8) = 33.3].
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Figure 21. Comparison of test speech mized at 0 dB, -6 dB, and -12 dB. In all cases,
the TJR of the training speech matched the TJR of the test speech. All experiments
used modified Gaussian classification (full covariance), unsupervised training, adaptive
acoustic segmentation, and the MIT-CBG data base. The difference between the TJRs
was significant [F(2,40) = 14.0].
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Figure 22. Comparison of using test speech mized at 0 dB vs. test speech mized at

-6 dB. In both cases, the TJR of the training- speech was 0 dB. All experiments used

modified Gaussian classification (full covariance), unsupervised training, adaptive acoustic

segmentation, and the MIT-CBG data base.
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Figure 23. Comparison of using training speech mized at 0 dB vs. training speech mized
at -6 dB. In both cases, the TJR of the test speech was 0 dB. All experiments used mod-
ified Gaussian classification (full covariance), unsupervised training, adeptive acoustic
segmentation, and the MIT-CBG data base.

68




PERCENT CORRECT

PERCENT CORRECT

152533-24

1 REF/SPEAKER (-pair) '3 REF/SPEAKER (-pair)- 9 REF/SPEAKER (-pair)

100 | | Al T x T |
80 |~ — = - 0 B
A T :
solE - —g — ®
.
40 I~ — — - - -1
A 0-dBTEST A 0-08 TEST A 0-dB TEST
20 = [ -12.98 TEST - ~ O -12dBTEST ] — O -12.dB TEST
0 1 | I I | ]
50 100 150 1000 50 100 150 1000 50 100 150 1000
INTERVAL LENGTH (ms)
Figure 24. Compearison of using test speech mized at 0 dB vs. test speech mized at
-12dB. In both cases, the TJR of the training speech was 0 dB. All experiments used
modified Gausswan classification (full covariance), unsupervised training, adaptive acoustic
segmentation, and the MIT-CBG data base.
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Figure 25. Comparison of using training speech mized at a uniform TJR vs. training
speech mized at a nonuniform TJR. All ezperiments used modified Gaussian classification
(full covariance), unsupervised training, adaptive acoustic segmentation, the MIT-CBG
data base, and nine references per specker(-pair).
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Figure 26. Same-as Figure 25 ezcep! only ezperiments with mized training are displayed.
The difference between the TJRs was significant [F(2,120) = 50.6).

4.5 Other Ideas

Two other speaker activity detection ideas were implemented and tested, although less rigor-
ously than the two classifiers described above.

4.5.1 Delta Cepstrum Feature Vectors

One idea was to modify the vector-quantizing classifier to operate on two feature vectors per
frame rather than one. The first feature vector remained the instanianeous mel-frequency weighted
. cepstrum as defined above. The second feature vector was the delta cepstrum, defined as the
weighted difference of a set of contiguous instantaneous cepstral vectors

K
> khken(t+k)
Acm(t) = ==X

) (18)

K
hy k2
k==K

where Acp,(t) is the m'th element of the delta cepstrum at time £, ¢, (t) is the m’th element of the

cepstrum at time ¢, ki is a2 symmetric window (e.g., triangular, Hamming, etc.), and K is some
small odd integer (e.g., 1, 3, 5, etc.). Because it has been shown that the information contained in
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the delta cepstrum is relatively uncorrelated with the information in the cepstrum [53], the delta
cepstrum feature vectors were used in conjunction with rather than in place of the instantaneous
cepstral feature vectors. Two codebooks were created, and the distance calculated in each frame
was the weighted sum of the distances of each of the two feature vectors to its nearest respective
codebook entry.

The delta cepstrum was abandoned as a feature for the vector-quantizing classifier because the
concept of using the difference between neighboring cepstra is only meaningful where neighboring
cepstra are different from one another. To the extent that acoustic segmentation tends to create
homogeneous intervals, the vector-quantizing classifier tended to operate on relatively homogeneous
regions, i.e., regions where neighboring cepstra were quite similar. Therefore, the delta cepstrum
feature vector had elements too close to zero to be of use in discrimination.

4.5.2 Speaker-Independent Detection Using Linear Predictive Analysis

Each of the algorithms described up to now has relied on a priori test-utterance-independent
speaker information. In an effort to reduce the dependence on a priori information and to distin-
guish one- from two-speaker speech, attention shifted toward studying features capable of discrim-
inating one-speaker from two-speaker speech.

Because the linear predictive (LP) model [47] of an excitation signal input to a linear filter
is not appropriate for two-speaker speech, the LP error signal should hypothetically have greater
energy for two-speaker speech than for one-speaker speech. The variation in the error energy is
rather large even for one-speaker speech, suggesting the need to average across many frames before
making a decision.

To test the hypothesis, a 10th-order correlation-method LP analysi§ system was implemented
and the average error of two-speaker speech was compared to one-speaker speech. The two-speaker
speech had, on average, an error with energy four times larger than one-speaker speech. Given
this encouraging result, 20 seconds of training speech from each of the three MIT-CBG speakers
and each of the three pairs of MIT-CBG speakers were concatenated. This training speech was
used to find a threshold value of the average error below which lay mainly one-speaker speech
and above which lay mainly two-speaker speech. Given this threshold, a different 120 seconds of
unknown speech from the same speakers and speaker pairs was presented to the system. Because
average error has high variation, fixed segmentation was applied to the unknown speech and an
average error inside each segment was calculated. The unknown speech within a segment was either
completely one-speaker or completely two-speaker, and the task of the system was to detect which
type of speech had been presented, based on the threshold value. Figure 27 shows the results of
the LP error signal discriminant experiments.

A system operating at random would achieve 50 percent accuracy. To summarize, the system
was marginally effective at 500 ms per segment and improved up to 90 percent at 5 sec per segment.
Because the system performed poorly at short segment lengths, further algorithm development was
not pursued.
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Figure 27.  Results of the LP-based speaker activity detection system. A system operating
at random would achieve:50 percent accuracy.

4.6 Summary and Future Work

A cochannel labeling system that allows the incorporation of speaker-dependent test-utterance-
independent information has been developed and evaluated. The effort showed that the same tech-
niques traditionally used in one-speaker speaker identification could be applied to the two-speaker
problem, but that new techniques were required for addressing the issues of very short interval
length, segmentation, and two-speaker training.

The system providing the highest performance was-a Gaussian classifier with unsupervised
training, acoustic segmentation of the unknown input, and roughly nine references per speaker
and speaker pair for average interval sizes near 100 ms. For this choice of parameters, labeling
performance was approximately 80 percent correct.

Future work is needed in several areas. First, research should be directed toward develop-
ment of classifiers achieving better performance, perhaps by choosing a different class of static
classifier. Recently, a Gaussian mixture model has been shown to improve the performance of
conventional speaker identification (49]. This model might simplify the speaker activity detector
by alleviating the need for multiple references per source. Alternatively, a dynamic classifier such
as a hidden Markov model might alleviate the need for segmentation and might be able to better
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model transitional information such as the difference between speaker onsets and offset vs. changes
in one-speaker articulation.

Second, further study into detection systems that can operate with less training data is
important. Even 10 sentences per speaker may be difficult to acquire in an operational environment.
An adaptive system that could update its source models based on the classification of incoming
test data might help alleviate the training data problem.

Third, generalizing the system to detect one target and many jammers would be useful.
Perhaps the jammer detection aspect of the system might even be made speaker-independent, i.e.,
only the identity of the target, not the identity of possible jammers, would be available to the
classifier.

Finally, the ultimate goal would be to use the results of speaker activity detection to perform
cochannel separation. A simulation system similar to th>* ported in Chapter 3 could help answer
the question of whether a front-end speaker activity det- ~ystem achieving 80 percent detection
performance would allow an-ideal jammer suppression sy ... to improve target intelligibility. The
competing sentence intelligibility tests of Chapter 3 would probably not be effective at capturing
the effect of the-speaker activity detection system, as-competing sentences are mainly two-speaker.
Thus, a different evaluation scheme would be required which allows testing the effects of varying
the amounts of one-speaker and two-speaker speech and varying the positions of the one-speaker
and two-speaker intervals in time.
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5. CONCLUSIONS

This study has been concesned with fundamental analysis of problems related to cochannel
interference suppress.oa rather than implementation of a spe_ific system. The first area studied wes
the measurement of expected improvement in intelligibility as a function of jammer attenuation
(Chapter 3). Although the results were based on only a few speakers, they indicated the following:

¢ Generally, the effect of cochannel interference and its simulated suppression seems to
be speaker-dependent. Evaluations were run on two pairs of speakers, with intelligi-
bility of the target in the first pair much higher than that of the target in the second
pair. Furthermore, target intelligibility for the first pair was affected strongly and
uniformly by TJR, whereas this effect was much: less systematic for the second pair.

o For both pairs, the effect of varying the level of jammer attenuation was significant
at all TJRs, although its impact was stronger and more uniform for the first pair
than for the second pair. Jammer attenuation of between 10 - .d 20 dB produced
meaningful increases in intelligibility.

e In regions where target intelligibility was already relatively high, attenuating the
jammer during jammer voicing resulted in significantly higher intelligibility improve-
ment than attenuating the jamnmer during target voicing. In regions where target
intelligibility was low, there was not a ccnsistent difference between the two schemes.

The most important extension of this simulation research would be the extension to a greater num-
ber of speaker pairs. Other items to be tested might include different rejection states or changing
the system tc operate on some characteristic of the incoming speech different from voicing. In
general, the goal of futrre work should be to upper-bound the expected performance of reaizable
suppression systems and to determine the amount of attenuation required for significant intelligi-
bility imp: “vement.

Recognizing that cochannel talker interference may not r.sult in a signal containing continu-
ously simultaneous speech, and motivated by the fact that parameter estimation in the one-speaker
regions is easier than parameter estimation in the two-speaker regions, Chapter 4 addressed the
second area of research, the problem of speaker activity detection. The key result was that unsu-
pervised training followed by Gaussian classification can be effective at detecting short intervals
of target, jammer, and target plus jammer. Future work should attempt to improve performance,
reduce the amount of required training speech, generalize the identity of the jammer, and use
the resulting system as a true front end. The expected effectiveness of an ideal speaker activity
detection system could be measured using simulatione similar to those described in Chapter 3.

This 2uthor can offer a few suggestions regarding future work in the general area of cochannel
interference suppression. If the goal is to implement a system, an analysis domain that linearly
represents cochannel speech might be best (why build a system that assumes that the two signals
add linearly in the log-r.agnitude frequency domain when it is obvious that the two signals cannot
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add linearly in the log-magnitude frequency domain?). The complex sinusoidal transform domain
(see Section 2.3.5) seems more attractive than either the log-magnitude spectrum or cepstral do-
mains because it preserves linearity. Next, if the system is intended to operate in a restricted set
of conditions, it may be worthwhile to implement a simulation system that attenuates the jammer
for conditions in which the actual system is expected to operate and that passes the jammer un-
processed for conditions in which the actual system is expected not to operate. By evaluating the
performance of the simulation system, the performance of the actual system can be upper-bounded.
Finally, it is important to evaluate the system objectively using intelligiLility tests. If possible, the
intelligibility tests should be modeled as closely as possible on the actual operational environment.
For example, if the operational listener will be allowed to listen to the processed speech repeatedly,
or if he will be allowed to vary parameters associated with the processing, the evaluation listener
should be allowed to exercise the same options. In addition, this is a ripe field for fundamental
research. Studies are needed to determine why humans find a competing speaker so distracting.
Some of the effects produced by the jammer occur at the level of simple peripheral auditory mask-
ing, whereas others are likely due to central processing. Similarly, research into why some jammers
are more effective than others would be helpful. Perhaps the crux of the problem is to find a way to
break the listener’s concentration on the jammer and focus it on the target. To conclude, there is a
wide variety of future research topics within the area of cochannel talker interference suppression.
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APPENDIX A
CEPSTRAL PITCH ESTIMATION

Ideally, one of the tasks of the front end of a cochannel suppression system would be to
perform joint pitch estimation on the incoming signal, producing a pitch contour for both the
target and jammer. Because joint pitch estimation is an unsolved problem (see Appendix B), most
of the separation systems rely on a priori pitch contours obtained from either manual or automatic
analysis of the isolated target and jammer utterances.

Perhaps the most popular one-speaker pitch estimator among previous cochannel researchers
has been the cepstral pitch estimator [33]. This estimator is motivated by modeling voiced speech
production as an excitation signal consisting of a periodic pulse train input to a linear time varying
filter. The homomorphic cepstrum operation “deconvolves” the input speech into envelope infor-
mation in the low-order coefficients and excitation information in the high-order coefficients. The
pitch period is then estimated as the index of the largest high-order cepstral peak.

Because cepstral analysis is nonlinear, the cepstrum of two-speaker speech is not the same as
the sum of the two one-speaker cepstra. Nonetheless, some researchers have observed that cepstral
analysis of the sum of two voiced speech signals often results in two local maxima in the high-order
cepstrum, one due to the target and one due to the jammer (see Figure A-1).
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Figure A-1. The top graph shows the cepstrum of a frame of the synthesized vowel /i/,
as in “beet,” with a pitch period of 5.8 ms and a pilch frequency of 189 Hz. Note the peak
in the cepstrum at indez 53, corresponding {0 5.3 ms at 10-kHz sampling. The middle
figure shows the cepstrum of a frame of the synthesized vowel /3-/, as in “bird,” with a
pitch period of 18.5 ms and a pitch frequency of 74.1 Hz. Note the peak in the cepsirum
at indez 135, corresponding o 13.5 ms al 10-kHz sampling. The bottom graph shows the
cepstrun of the sum of the lwo synihesized vowels. The largest peak is at 53, the pitch
period of the first vowel. The next largest is al 106, a mulliple of 53. The third largest
peak is al 135, the pilch period of the second vowel.
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APPENDIX B
JOINT PITCH ESTIMATION

This section reports an attempt to implement a two-speaker pitch estimation system reported
in Woodsum, et al. [62], in which it was claimed that the estimation system was able to accurately
estimate the pitch of the jammer at TJRs ranging from 0 to -9 dB. After a review of the algorithm,
some evaluation results are reported.

B.1 Algorithm

The joint pitch estimator implemented was nearly identical to that reported in Woodsum,
et al. [62]. In that system, it is assumed that the input signal, s(n), is the sum of two voiced speech
signals

s(n) = s1(n) +s2(n) (B.1)

with |s;| > [s2], i.e., s = 5.2 5; is assumed to be the jammer and sy the target, implying that the

system is meant to operate at negative TJRs. s; is removed from s, bypassing s through a filter
having z-transferm

H(z)=1-a;z™™ , (B.2)

where k; is the unknown pitch period of s; and @; is an unknown nuisance parameter. For a3 > 0,
H(z) is a comb filter having peaks at odd multiples of 7/k. and valleys at even multiples of 7 /k;.
Thus, if s1(n) is voiced and has pitch k;, i.e., if it has most of its energy at multiples of 27 /k;, then
the residual signal

e(n) = s(n) — a18(n — k1) (B.3)

is an approximation to s2. The desired a; and k; are those that minimize E = Ze2(n), i.e., the

n
best pitch for speaker 1 is the one whose comb filter can suppress the most energy from the summed
signal. Minimizing F is equivalent to minimizing

E = ) (s(n)—ais(n— k1))?

26Throughout this appendix, the subscript of a variable refers to the speaker number. Thus, s;
refers to the speech of speaker 1.
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2(2(71) 2a15(n)s(n — k1) + a3s?(n — kl)) ) (B.4)

n

Taking the partial derivative with respect to ¢, setting the result to zero, and solving for a, leaves
the optimal a;, designated a;

> (s(n)s(n — ky))

4 = nZsz(n—kl) (B.5)
és(kl)
$s(0) (B5)
where
3u(m) = 3 s(n)s(n — m) ®.7)
is an estimate of the autocorrelation function.?” This results in a minimum E, as ££ > 0 Va;.
Thus, to find the k; that minimizes E, one must minimize
E = Y (s(n) ~ars(n - ky)? (B.)
2
- 3 (st - E- iy 29
_ 2 (k1) (k1) §2
) Z( g0 T G k)) (210
o ¢s(k1) $2(k1) -
= ¢4(0) - ¢8(0) Ly (ky) + 72(0) $5(0) (B.11)
G ALY
= ¢5(0) 54(0) (B.12)
o _ AL
= %0 (1 &3(0)) | (B19)

27 Assuming Y  s%(n) = Y *(n ~ k).
n n
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Therefore, minimizing E is equivalent to finding the k; > 0 that maximizes the autocorrelation
5. The value of k; that results in minimum E is designated k;. Given &; and k;, e(n) = 52(n) ~
s2(n) can be calculated. &, is derived analytically from 33(n), and ks is found by maximizing the
autocorrelation. These resulting values of d; and ko are used to filter s(n) to get a new estimate
of 51(n), from which new values for &; and k; are obtained, etc. This iterative process continues
until convergence. Although an estimate of both k1 and k, are produced, only the value of ki,
corresponding to the stronger speaker, is required.

B.2 Evaluation

The joint pitch estimation system was evaluated on synthetic speech. Three synthetic vowels
were created by passing an impulse train with a desired pitch period through three digital resonators
in series [16]. The formant frequencies of each of the three vowels are shown in Table B-1.

TABLE B-1

Synthetic Vowe! Specifications
(Three synthetic vowels were created in the process of testing the joint pitch
estimation system. Formant frequencies are in Hz)

IPA | Example F F F

i beet 270 | 2290 | 3010
bit 390 | 1990 | 2550
bird 490 | 1350 | 1690

Five one-second utterances of the vowel /i/ were synthesized using five different pitch periods
selected at random from within the interval 2.0 ms and 20 ms. Within each synthesized vowe) the
pitch was held constant. Similarly, five one-second utterances of the vowel /1/ were synthesized
using five different pitch periods also selected at random from within the interval 2.0 ms and 20 ms.
Finally, five one-second utterances of the vowel /3/ were synthesized using the same pitch periods
as used for /1/. Thus, a total of 15 synthesized vowels was available.

A test consisted of summing a target vowel and a jammer vowel at the following TJRs: -1 dB,
-3 dB, -6 dB, and -9 dB. The summed waveforms were then processed by the joint pitch estimation
system. A new estimate of the pitch of the jammer, i.e., the stronger speaker, was output for every
10-ms frames using a 40-ms window. To help avoid isolated errors, two-stage median filtering was
employed [46]. The estimated pitch of the stronger speaker was compared against its known value,
and the RMS difference between the true and hypothesized pitch was calculated. Figure B-1 shows
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the results of the first set of tests, in which all five vowels /i/ were run against all five vowels /1/
at all TJRs and in both configurations (/i/ target vs. /1/ jammer and /1/ target vs. /i/ jammer):

Figure B-2 shows the results of the second set of tests, in which all five vowels /i/ were run

against all five vowels /3+/ at all TJRs and in both configurations.

15253329

JOINT PITCH ESTIMATION RESULTS
| | I

0 TARGETPITCH=9.2ms
A\ TARGETPITCH =9.6 ms

100 |

80<§- -~ TARGETPITCH= 123 ms
X TARGETPITCH = 13.8 ms
> TARGET PITCH = 14.8 ms
xr 60
2
T
[0 4
ui
[2]
=
o 40
20 |
0 5 4
47 7.7 10.9 145 17.1

JAMMER PITCH (ms)

Figure B-1. The joint pilch estimation results recorded in RMS error of the estimated
pitch of the stronger speaker as a function of targel and jammer pitch period for synthetic
vowel /i/, as in “beet,” against synthetic vowel /1/, as in “bit.” The Y-azis measures
the RMS error in samples, e.g., a value of 10 means the oulpul of the pilch estimation
system could be ezpecled to deviate from the irue pitch period of the sironger speaker by
10 samples (1 ms).

82




JOINT PITCH ESTIMATION RESULTS
100 ] ] I

[0 TARGETPITCH =9.2 ms
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Figure B-2. The joinl pilch estimalion resulls recorded in RMS error of the eslimated

pilch of the stronger speaker as a function of target and jammer pitch period for synthelic
vowel /i/, as in “beel,” against synthetic vowel /3-/, as in “bird.”
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B.3 Comments

The figures show that for some pairs of target and jammer vowels the system could accurately
and consistently estimate the pitch of the stronger vowel. As the ideal window length for one-
speaker pitch estimation systems is between two and three times the pitch period, it is no surprise
that the joint pitch estimation system performed best when the true pitches were about half as
long as the fixed window length. For the experiments with shorter pitch periods, the erroneous
estimated pitches were often multiples or submultiples of either the weaker or the stronger speaker,
multiples or submultiples of the difference or sum of the two true pitches, or seemingly unrelated
to-the true pitches. Much of the problem lay in the inability of the system to adjust its window
size. Adaptive adjustment of window size is crucial in one-speaker pitch estimators but was left
unaddressed largely because it was unclear how window- size should be adjusted given two-speaker
input. Octave errors, i.e., the report of an estimated pitch that is an octave above or below the
true pitch, are also a well-known problem of one-speaker autocorrelation pitch estimators; a two-
speaker pitch estimator based on autocorrelation would also be vulnerable to that problem. In
short, the claim of Woodsum, euv al. [62] that this pitch estimation system had been “shown to
perform accurate jammer, pitch extraction for voice to voice ratios ranging from 0 to -9 dB” could
be confirmed only weakly, and then only for synthetic vowels. No tests on natural speech were
performed.
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APPENDIX C
GAUSSIAN CLASSIFIER SIMPLIFICATION

This appendix shows that maximizing the value of P, in Equation 13 is equivalent to maxi-
mizing A; in Equation 14.

During training, an estimate of the mean, 4, and covariance matrix, A, of each source j’s
feature vectors is obtained by calculating the sample mean and covariance of each source j's train-
ing feature vectors. Given the Gaussian model assumption, the mean and covariance completely
characterize the source j. During recognition, .N feature vectors Z; are observed. Assuming the
input feature vectors are the result of independent observations, the probability that the unknown
input vectors Z; were produced by source j is

N

P;=]] (@T—),,/;lmm'exp {- %(fi — )7 A& - ;71)}) : (C.1)
' J

i=1

The task of the recognizer is to find the source j whose Gaussian model best fits the input feature
vectors I, i.e., the model resulting in the highest P, given the vectors z,. Because the logaritiim
operation is monotonic, one can instead maximize logP_,,

log P} = Z(——log(%)——loglAl—{%(x, AN - ,r,)}) . (C.2)

1=1

-

The first two terms in the summation do not depend on i, so

log P; =~ log(2x) - = logl;1 - 5 2({(& SN NE-E)) . (C3)

s=1

The “irace” of a matrix is defined as the sum of its main diagonal elements, and is designated
tr (A). One can show that given a matrix A and two vectors v] and 3,

tr (Av;vg ) = 5T Av; . (C.4)

Applying this theorem to the third right-hand side term in Equation C.3,

';' sz: ({(17; I‘J) A; & - I‘J)}) (tr {A.i_l(fi - 5) (% — IE)T}) . (C.5)
i=]

1-1
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The trace of a sum of matrices is the same as the sum of the traces. Thus,

LS ({6 - i a7 - )

i=1

= L i(A.—l(—._-.)(-:_-.T
= o= 3 \Ti T HiIATi ﬂJ))

o
Sl i — ;) (i #J))

i=]

where

aul
il

Sample mean of unknown input vectors

EO

i=1

Combining terms,

-Z({(z; B ANE - 5)))

i=1
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N-1

-1 AT — — 1 -1/= —
tr (A;78) + FE-BNTE-B) (C.11)
where
S = Sample covariance of unknown input vectors

N — —
> (E-B) (@& -F))

i=1
e : (C.12)

So, altogether

pN

. N
logP; = ) =—E-log(er) - 2 loglAsl -

N-1
2

u(8718) - 3 E- BIATE-) - (.13

By splitting the terms depending on S from the terms depending on % and by some arbitrary
manipulation of the constants, Equation (14) can be obtained.

Aj = mj+c (C.19)

-2 log 27 - %log Az + -;-logN (C.15)

3
I
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- LE - 0E- 5)

(N — -
¢ = —?\——D- log 27w — I—V—l log A, — llogN (C.16)
2 2 2
N-1 -1
-— tr {AJ- S}

Thus, the likelihood variable }; is split into two parts, m, and ¢,. m, contains some constants,
some terms depending only on the reference j, and one term depending on the sample mean of
the input, Z. ¢, also contains some constants, some terms depending only on the reference j, and
one term depending on the sample covariance of the input, S. At this point the terms that are
independent of j can be dropped.
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